Inhibition of Porcine Endogenous Retrovirus Expression by RNA Interference

RNA 간섭을 통한 Porcine Endogenous Retrovirus의 발현 억제

  • Lee, Hyun-A (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Koo, Bon-Chul (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Kwon, Mo-Sun (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Kim, Te-Oan (Department of Physiology, Catholic University of Daegu School of Medicine)
  • 이현아 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 구본철 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 권모선 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 김태완 (대구가톨릭대학교 의과대학 생리학교실)
  • Published : 2006.09.30

Abstract

In recent years the number of patients waiting for organ transplantation has greatly outpaced the supply of human organs available, which leads to a renewed interest in pig-to-human xenotransplantation as an alternative. However, one of the biggest barriers in the xenotransplantation is presence of porcine endogenous retroviruses(PERV) that can infect human cells. In this study, to present a possible solution for this problem we tried to inhibit expression of PERVs using shRNAs(short hairpin RNA) at the level of RNA synthesis and virus release. The shRNA targeting the sequence of PERV A, B type was cloned into pSIREN-RetroQ vector under the control of polymerase-III U6-RNA gene promoter. Quantitative real-time PCR was performed to detect my alterations in mRNA production of PERV A, B targeted by the shRNA in each done. Depending on the target sequence of the shRNA, the transcription of PERV was decreased to as much as 4% and the number of progeny viruses was reduced to less than 1/200,000. Transgenic pigs producing such shRNAs may result in a highly reduced PERV expression in cells and organs, which is a prerequisite for safe xenotransplantations.

최근 돼지의 장기를 사람에게 이식하는 이종간 장기 이식에 관한 연구가 급속히 발전되고 있다. 그러나 돼지의 장기를 이식할 경우 가장 큰 문제점 중의 하나는 돼지 genome 내에 존재하는 내인성 레트로바이러스(porcine endogenous retrovirus; PERV)가 인간에게 그대로 전이될 수 있다는 것이다. 이에 대한 대안으로 최근 활발히 연구되고 있는 RNA 간섭을 통한 PERV RNA의 발현을 최대한 억제하는 방법이 제안되고 있는데, RNA 간섭(RNA interference)은 double-standard RNA(dsRNA)가 상보적인 표적 mRNA를 분해하여 결과적으로 표적 단백질의 발현을 특이적으로 억제하는 현상을 의미한다. 본 연구에서는 PERV에 대한 RNA 간섭 현상을 일으키는 shRNA 유전자를 레트로바이러스 벡터를 이용하여 돼지세포에 RNA)가 상보적인 표적 mRNA를 분해하여 결과적으로 표적 단백질의 발현을 특이적으로 억제하는 현상을 의미하다. 도입한 후 PERV의 발현율 감소 여부를 조사하였다. 그 결과, gag-pol 유전자와 env 유전자 발현은 각각 대조군 세포의 4%와 10% 정도로 억제되었다. 한편, virus 입자의 생산에서 gag-pol 유전자는 대조군 세포에 비해 300배 이상 억제되었으며, env 유전자에서는 20만 배 이상 억제되었다. 이상의 결과를 미루어 볼 때 형질 전환 돼지를 이용한 이종 장기 이식에 있어서 RNA 간섭 현상을 이용한 PERV의 발현을 억제하는 시도는 생물학적안전성을 크게 증가시킬 수 있을 것으로 사료된다.

Keywords

References

  1. Banerjea A, Li MJ, Bauer G, Remling L, Lee NS, Rossi J, Akkina R (2003): Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD43+ progenitor cell-derived macrophages. Mol Ther 8: 62-71 https://doi.org/10.1016/S1525-0016(03)00140-0
  2. Blusch JH, Patience C, Takeuchi Y, Templin C, Roos C, Von Der Helm K, Steinhoff G, Martin U (2000): Infection of nonhuman primate cells by pig endogenous retrovirus. J Virol 74:7687-7690 https://doi.org/10.1128/JVI.74.16.7687-7690.2000
  3. Blusch JH, Patience C, Martin U (2002): Pig endogenous retroviruses and xenotransplantation. Xenotransplantation 9:242-251 https://doi.org/10.1034/j.1399-3089.2002.01110.x
  4. Caplen NJ, Parrish S, Imani F, Fire A, Morgan RA (2001): Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc Natl Acad Sci USA 98: 9742-9747
  5. Chen Z, Xu ZF, Ye JJ, Yao HP, Zheng S, Ding JY (2005): Combination of small interfering RNAs mediates greater inhibition of human hepatitis B virus replication and antigen expression. J Zhejiang Univ Sci B 6:236-241
  6. Das AT, Brummelkamp TR, Westerhout EM, Vink M, Madiredjo M, Bernards R, Berkhout B (2004): Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J Virol 78: 2601-2605 https://doi.org/10.1128/JVI.78.5.2601-2605.2004
  7. Dorling A (2002): Clinical xenotransplantation: pigs might fly? Am J Transplant 2:695-700 https://doi.org/10.1034/j.1600-6143.2002.20803.x
  8. Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998): Rates of spontaneous mutation. Genetics 148: 1667- 1686
  9. Elbashir SM, Lendeckel W, Tuschl T (2001): RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188-200 https://doi.org/10.1101/gad.862301
  10. Fire A (1999): RNA-triggered gene silencing. Trends Genet 15:358-363 https://doi.org/10.1016/S0168-9525(99)01818-1
  11. Giladi H, Ketzinel-Gilad M, Rivkin L, Felig Y, Nussbaum O, Galun E (2003): Small interfering RNA inhibits hepatitis B virus replication in mice. Mol Ther 8:769- 776 https://doi.org/10.1016/S1525-0016(03)00244-2
  12. Hutvagner G, Zamore PD (2002): RNAi: nature abhors a double-strand. Curr Opin Genet Dev 12: 225-232 https://doi.org/10.1016/S0959-437X(02)00290-3
  13. Kahana R, Kuznetzova L, Rogel A, Shemesh M, Hai D, Yadin H, Stram Y (2004): Inhibition of foot- andmouth disease virus replication by small interfering RNA. J Gen Virol 85:3213-3217 https://doi.org/10.1099/vir.0.80133-0
  14. Karlas A, Kurth R, Denner J (2004): Inhibition of porcine endogenous retroviruses by RNA interference: increasing the safety of xenotransplantation. Virology 325:18-23 https://doi.org/10.1016/j.virol.2004.04.022
  15. Leonard JN, Schaffer DV (2005): Computational design of antiviral RNA interference strategies that resist human immunodeficiency virus escape. J Virol 79:1645-1654 https://doi.org/10.1128/JVI.79.3.1645-1654.2005
  16. Livak KJ, Schmittgen TD (2001): Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402-408 https://doi.org/10.1006/meth.2001.1262
  17. Mackay IM, Arden KE, Nitsche A (2002): Real-time PCR in virology. Nucleic Acids Res 30:1292-1305 https://doi.org/10.1093/nar/30.6.1292
  18. Martin U, Kiessig V, Blusch JH, Haverich A, von der Helm K, Herden T, Steinhoff G (1998): Expression of pig endogenous retrovirus by primary porcine endothelial cells and infection of human cells. The Lancet 352:692-694 https://doi.org/10.1016/S0140-6736(98)07144-X
  19. Miyagawa S, Nakatsu S, Nakagawa T, Kondo A, Matsunami K, Hazama K, Yamada J, Tomonaga K, Miyazawa T, Shirakura R (2005): Prevention of PERV infections in pig to human xenotransplantation by the RNA interference silences gene. J Biochem (Tokyo) 137:503-508 https://doi.org/10.1093/jb/mvi059
  20. Morris KV, Rossi JJ (2006): Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Ther 13:553-558 https://doi.org/10.1038/sj.gt.3302688
  21. Paddison PJ, Caudy AA, Hannon GJ (2002): Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci USA 99:1443-1448
  22. Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS (2002): Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948-958 https://doi.org/10.1101/gad.981002
  23. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004): Rational siRNA design for RNA interference. Nat Biotechnol 22:326-330 https://doi.org/10.1038/nbt936
  24. Specke V, Rubant S, Denner J (2001): Productive infection of human primary cells and cell lines with porcine endogenous retroviruses. Virology 285: 177-180 https://doi.org/10.1006/viro.2001.0934
  25. Takeuchi Y, Patience C, Magre S, Weiss RA, Banerjee PT, Le Tissier P, Stove JP (1998): Host range and interference studies of three classe of pig endogenous retrovirus. J Virol 72:9986-9991
  26. Tompkins SM, Lo CY, Tumpey TM, Epstein SL (2004): Protection against lethal influenza virus challenge by RNA interference in vivo. Proc Natl Acad Sci USA 101:8682-8686
  27. Tuschl T, Zamore PD, Lehmann R, Bartel DP, Sharp PA (1999): Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13:3191-3197 https://doi.org/10.1101/gad.13.24.3191
  28. White SA, Nicholson ML (1999): Xenotransplantation. Br J of Surg 86:1499-1514 https://doi.org/10.1046/j.1365-2168.1999.01340.x
  29. Wilson JA, Richardson CD (2005): Hepatitis C virus replicons escape RNA interference induced by a short interfering RNA directed against the NS5b coding region. J Virol 79:7050-7058 https://doi.org/10.1128/JVI.79.11.7050-7058.2005
  30. Wong ML, Medrano JF (2005): Real-time PCR for mRNA quantitation. BioTechniques 39:75-85 https://doi.org/10.2144/05391RV01
  31. Yee JK, Friedmann T, Burns JC (1994): Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell BioI 43:99-112 https://doi.org/10.1016/S0091-679X(08)60600-7