• Title/Summary/Keyword: Popoviciu functional equation

Search Result 5, Processing Time 0.02 seconds

HYERS-ULAM-RASSIAS STABILITY OF A QUADRATIC FUNCTIONAL EQUATION

  • Trif, Tiberiu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.2
    • /
    • pp.253-267
    • /
    • 2003
  • In this paper we deal With the quadratic functional equation (equation omitted) deriving from an inequality of T. Popoviciu for convex functions. We solve this functional equation by proving that its solutions we the polynomials of degree at most two. Likewise, we investigate its stability in the spirit of Hyers, Ulam, and Rassias.

STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH JENSEN TYPE

  • LEE, YOUNG-WHAN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.57-73
    • /
    • 2005
  • In this paper we solve a generalized quadratic Jensen type functional equation $m^2 f (\frac{x+y+z}{m}) + f(x) + f(y) + f(z) =n^2 [f(\frac{x+y}{n}) +f(\frac{y+z}{n}) +f(\frac{z+x}{n})]$ and prove the stability of this equation in the spirit of Hyers, Ulam, Rassias, and Gavruta.