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Abstract. In this paper we study the Hyers-Ulam-Rassias stability of Popoviciu’s func-

tional equation in Banach modules over a Banach algebra.

1. Introduction

In 1940, S. M. Ulam ([13]) raised the following question: Under what conditions
does there exist an additive mapping near an approximately additive mapping ?

In 1941, for Banach spaces the Ulam problem was first solved by D. H. Hyers
([7]) by proving that if δ > 0 and f : E1 → E2 is a mapping with E1, E2 Banach
spaces, such that ||f(x+y)−f(x)−f(y)|| ≤ δ for all x, y ∈ E1, then there exists a
unique additive mapping T : E1 → E2 such that ||f(x)− T (x)|| ≤ δ for all x ∈ E1.

In 1978, Th. M. Rassias ([11]) gave a generalization of the Hyers’ result in the
following way: Let E1 and E2 be a normed space and a Banach space, respectively,
and f : E1 → E2 a mapping such that f(tx) is continuous in t ∈ R (the real field)
for each fixed x ∈ E1. Assume that there exist constants θ ≥ 0 and p ∈ [0, 1) such
that ‖f(x+y)−f(x)−f(y)‖ ≤ θ(||x||p+ ||y||p) for all x, y ∈ E1. Then there exists
a unique R-linear mapping T : E1 → E2 such that ‖f(x) − T (x)‖ ≤ 2θ

2−2p ||x||p for
all x ∈ E1.

In connection with the facts above, the stability problems of functional equations
have been extensively investigated by many mathematicians (see, for example, [2],
[3], [4], [5], [6], [8], [9]).

Recently T. Trif ([12]) studied the Hyers-Ulam-Rassias stability of the Popovi-
ciu’s functional equation (from [10]) for normed spaces which is the Jensen type
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functional equation
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We here extend the Hyers-Ulam-Rassias stability of the Popoviciu’s functional
equation to Banach modules over a Banach algebra, and obtain some related results.

2. Results

Throughout this section, let B be a unital normed algebra with norm | · | over
the complex field C, and let BB1 and BB2 be a left normed B-module and a left
Banach B-module with norms ‖ · ‖ and ‖ · ‖, respectively.

Note that a mapping f : BB1 → BB2 is called B-linear if f(ax) = af(x) for all
a ∈ B and all x ∈ BB1.

Given a function f : BB1 → BB2, we set

Df(x, y, z) := 3f
(
ax+ ay + az

3

)
+ af(x) + af(y) + af(z)

−2
[
af
(x+ y

2
)

+ f
(ay + az

2
)

+ f
(az + ax

2
)]

for all a ∈ B and all x, y, z ∈ BB1.

Theorem 1. Assume that δ, θ ∈ [0, ∞) and that p ∈ (0, 1). Let f : BB1 → BB2

be a mapping such that

(1) ‖Df(x, y, z)‖ ≤ δ + θ(‖x‖p + ‖y‖p + ‖z‖p)
for all a ∈ B with |a| = 1 and all x, y, z ∈ BB1. If f(tx) is continuous in t ∈ R for
each fixed x ∈ BB1, then there exists a unique B-linear mapping A : BB1 → BB2

such that

‖f(x)− f(0)−A(x)‖ ≤ δ

3
+

θ

21−p − 1
‖x‖p for all x ∈ BB1.

Proof. By [12, Theorem 3.1], it follows from the inequality of the statement for
a = 1 that there exists a unique additive mapping A : BB1 → BB2 satisfying the
condition given in the statement. The additive mapping A given in the proof of [12,
Theorem 3.1] is similar to the additive mapping given in the proof of [11, Theorem].

Using the same reasoning as in the proof of [11, Theorem] and the assumption
that f(tx) is continuous in t ∈ R for each fixed x ∈ BB1, it follows that the additive
mapping A : BB1 → BB2 is R-linear.

Let a ∈ B with |a| = 1. Setting y = x and z = −2x in (1), we get

(2) ‖3f(0) + af(−2x)− 4f(−a
2
x)‖ ≤ δ + θ(2 + 2p)‖x‖p for all x ∈ BB1.
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Put ε := δ + 3‖f(0)‖. From (2) we have

‖af(−2x)− 4f(−a
2
x)‖ ≤ ε+ θ(2 + 2p)‖x‖p for all x ∈ BB1.

Replacing x by −2x in the above relation yields

(3) ‖af(4x)− 4f(ax)‖ ≤ ε+ θ22p(1 + 21−p)‖x‖p for all x ∈ BB1.

Using induction on n with (3), we see that

(4) ‖af(22nx)− 4f(22(n−1)ax)‖ ≤ ε+ θ22np(1 + 21−p)‖x‖p

for all x ∈ BB1 and all positive integers n. Note that there exists a K > 0 such
that ‖az‖ ≤ K|a| ‖z‖ for all a ∈ B and all z ∈ BB2 by the definition of a normed
module.

Now letting a = 1 in (4) and then replacing x by ax in the result, we obtain

‖f(22nax)− 4f(22(n−1)ax)‖ ≤ ε+ θ22np(1 + 21−p)‖ax‖p(5)
≤ ε+ θ22np(1 + 21−p)Kp‖x‖p for all x ∈ BB1.

On account of (4) and (5), we get

‖f(22nax)− af(22nx)‖ = ‖f(22nax)− 4f(22(n−1)ax)
+4f(22(n−1)ax)− af(22nx)‖

≤ ‖f(22nax)− 4f(22(n−1)ax)‖
+‖af(22nx)− 4f(22(n−1)ax)‖

≤ 2ε+ (Kp + 1)22np(1 + 21−p)‖x‖p

for all x ∈ BB1. So 2−2n‖f(22nax) − af(22nx)‖ → 0 as n → ∞ for all x ∈ BB1.
Hence we conclude that

A(ax) = lim
n→∞

2−2nf(22nax) = lim
n→∞

2−2naf(22nx) = aA(x)

for all a ∈ B with |a| = 1 and all x ∈ BB1. Since A is R-linear and A(cx) = cA(x)
for each element c ∈ B with |c| = 1, we have

A(ax+ by) = A(ax) +A(by)

= A(|a| a|a|x) +A(|b| b|b|y)

= |a|A(
a

|a|x) + |b|A(
b

|b|y)

= |a| a|a| A(x) + |b| b|b|A(y)

= aA(x) + bA(y)
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for all a, b ∈ B \ {0} and all x, y ∈ BB1. Thus the unique R-linear mapping
A : BB1 → BB2 is a B-linear mapping, as desired. �

Corollary 1. Let E1 and E2 be a complex normed space and a complex Banach
space, respectively. Let f : E1 → E2 be a mapping such that

‖Df(x, y, z)‖ ≤ δ + θ(‖x‖p + ‖y‖p + ‖z‖p)
for a = 1, i and all x, y ∈ E1. If f(tx) is continuous in t ∈ R for each fixed x ∈ E1,
then there exists a unique C-linear mapping A : E1 → E2, where C is the complex
field, such that

‖f(x)− f(0)−A(x)‖ ≤ δ

3
+

θ

21−p − 1
‖x‖p for all x ∈ BB1.

Proof. Since C is a complex Banach algebra, we see that E1 and E2 are considered
as a normed C- module and a Banach C- module, respectively. By Theorem 1, there
exists a unique C-linear mapping A : E1 → E2 satisfying the condition given in the
statement. �

Theorem 2. Let θ ∈ [0, ∞) and p ∈ (1,∞). Let f : BB1 → BB2 be a mapping
satisfying f(0) = 0 and

(6) ‖Df(x, y, z)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p)
for all a ∈ B with |a| = 1 and all x, y, z ∈ BB1. If f(tx) is continuous in t ∈ R for
each fixed x ∈ BB1, then there exists a unique B-linear mapping A : BB1 → BB2

such that

‖f(x)−A(x)‖ ≤ 2p−1

2p−1 − 1
θ‖x‖p for all x ∈ BB1.

Proof. By [12, Theorem 3.3], it follows from the inequality of the statement for
a = 1 that there exists a unique additive mapping A : BB1 → BB2 satisfying the
condition given in the statement. The additive mapping A given in [12, Theorem
3.3] is similar to the additive mapping given in the proof of [11, Theorem].

Using the same reasoning as in the proof of [11, Theorem] and the assumption
that f(tx) is continuous in t ∈ R for each fixed x ∈ BB1, it follows that the additive
mapping A : BB1 → BB2 is R-linear.

Let a ∈ B with |a| = 1. Putting y = x and z = −2x in (6) we see, as in the
proof of Theorem 1, that

‖af(−2x)‖ − 4f(−a
2
x)‖ ≤ θ(2 + 2p)‖x‖p for all x ∈ BB1.

Replacing x by −x2 in the above relation yields

(7) ‖af(x)− 4f(2−2ax)‖ ≤ θ(1 + 2p−1)21−p‖x‖p for all x ∈ BB1.



Hyers-Ulam-Rassias Stability of Popoviciu’s Functional Equation 485

Starting from (7) it is easy to prove that

‖af(2−2nx)− 4f(2−2(n+1)ax)‖ ≤ θ(1 + 2p−1)21−(2n+1)p‖x‖p

for all x ∈ BB1 and all positive integers n.
Following the similar method as in the proof of Theorem 1, we have

‖f(2−2nax)− af(2−2nx)‖ ≤ (Kp + 1)θ(1 + 2p−1)21−(2n+1)p‖x‖p

for all x ∈ BB1 and some K > 0. So 2n‖f(2−2nax) − af(2−2nx)‖ → 0 as n → ∞
for all x ∈ BB1. The rest of the proof is similar to the corresponding part of the
proof of Theorem 1. �

Corollary 2. Let E1 and E2 be a complex normed space and a complex Banach
space, respectively. Let f : E1 → E2 be a mapping such that

‖Df(x, y, z)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p)
for a = 1, i and all x, y ∈ E1. If f(tx) is continuous in t ∈ R for each fixed x ∈ E1,
then there exists a unique C-linear mapping A : E1 → E2 such that

‖f(x)−A(x)‖ ≤ 2p−1

2p−1 − 1
θ‖x‖p for all x ∈ BB1.

Proof. The proof is similar to the one of Corollary 1 by using Theorem 2. �

Theorem 3. Assume that δ, θ ∈ [0, ∞) and that p ∈ (0, 1). Let B be a unital
Banach ∗-algebra, and B+ the set of positive elements of B. Let f : BB1 → BB2 be
a mapping such that

‖Df(x, y, z)‖ ≤ δ + θ(‖x‖p + ‖y‖p + ‖z‖p)
for all a ∈ B+ with |a| = 1 or a = i, and all x, y, z ∈ BB1. If f(tx) is continuous
in t ∈ R for each fixed x ∈ BB1, then there exists a unique B-linear mapping
A : BB1 → BB2 such that

‖f(x)− f(0)−A(x)‖ ≤ δ

3
+

θ

21−p − 1
‖x‖p for all x ∈ BB1.

Proof. By the same reasoning as in the proof of Theorem 1, there exists a unique
R-linear mapping A : BB1 → BB2 such that

‖f(x)− f(0)−A(x)‖ ≤ δ

3
+

θ

21−p − 1
‖x‖p for all x ∈ BB1.

By the same method as the proof of Theorem 2.1, we see that

A(ax) = lim
n→∞

2−2nf(22nax) = lim
n→∞

2−2naf(22nx) = aA(x)
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for all a ∈ B+ with |a| = 1 or a = i, and all x ∈ BB1, and so

A(ax+ by) = aA(x) + bA(y),
A(ix) = iA(x)

for all a, b ∈ B+ \ {0} and all x, y ∈ BB1. For any element a ∈ B, a = a1 + ia2,
where a1 = a+a∗

2 and a2 = a−a∗
2i are self-adjoint elements, furthermore, a = a1

+ −
a1
− + ia2

+ − ia2
−, where a1

+, a1
−, a2

+, and a2
− are positive elements (see [1],

Lemma 38.8). Therefore,

A(ax) = A(a1
+xa1

−x+ ia2
+x− ia2

−x)
= a1

+A(x)a1
−A(x) + a2

+A(ix)− a2
−A(ix)

= a1
+A(x)− a1

−A(x) + ia2
+A(x)− ia2

−A(x)
= (a1

+ − a1
− + ia2

+ − ia2
−)A(x)

= aA(x)

for all a ∈ B and all x ∈ BB1. Hence A(ax + by) = A(ax) + A(by)aA(x + bA(y)
for all a, b ∈ B and all x, y ∈ BB1. Thus there exists a unique B-linear mapping
A : BB1 → BB2 such that

‖f(x)− f(0)−A(x)‖ ≤ δ

3
+

θ

21−p − 1
‖x‖p for all x ∈ BB1.

We complete the proof of the theorem. �

Theorem 4. Assume that θ ∈ [0, ∞) and p ∈ (1,∞). Let B be a unital Banach
∗-algebra over C, and B+ the set of positive elements of B. Let f : BB1 → BB2 be
a mapping satisfying f(0) = 0 such that

‖Df(x, y, z)‖ ≤ θ(‖x‖p + ‖y‖p + ‖z‖p)
for all a ∈ B+ with |a| = 1 or a = i, and all x, y, z ∈ BB1. If f(tx) is continuous
in t ∈ R for each fixed x ∈ BB1, then there exists a unique B-linear mapping
A : BB1 → BB2 such that

‖f(x)−A(x)‖ ≤ 2p−1

2p−1 − 1
θ‖x‖p for all x ∈ BB1.

Proof. The proof is similar to the one of Theorem 3. �

Remark. In Theorem 1, 2, 3 and 4, when the difference

Df(x, y, z) := 3f
(
ax+ ay + az

3

)
+ af(x) + af(y) + af(z)

−2
[
af

(
x+ y

2

)
+ f

(
ay + az

2

)
+ f

(
az + ax

2

)]
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is replaced by

Df(x, y, z) := 3f
(
ax+ ay + az

3

)
+ f(ax) + f(ay) + af(z)

−2
[
f

(
ax+ ay

2

)
+ f

(
ay + az

2

)
+ f

(
az + ax

2

)]

or

Df(x, y, z) := 3f
(
ax+ ay + az

3

)
f(ax) + f(ay) + f(az)

−2
[
f

(
ax+ ay

2

)
+ af

(
y + z

2

)
+ af

(
z + x

2

)]
,

the results do also hold.
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