Hyers-Ulam-Rassias Stability of Popoviciu's Functional Equation in Banach Modules

Yong-Soo Jung ${ }^{\dagger}$
Institute of Basic Science, Seowon University, Cheongju, Chungbuk 361-742, Korea
e-mail: ysjung@seowon.ac.kr
Jae-Hyeong Bae
Dept. of Mathematics, Chungnam National University, Taejon 305-764, Korea
e-mail: jhbae@math.cnu.ac.kr
Abstract. In this paper we study the Hyers-Ulam-Rassias stability of Popoviciu's functional equation in Banach modules over a Banach algebra.

1. Introduction

In 1940, S. M. Ulam ([13]) raised the following question: Under what conditions does there exist an additive mapping near an approximately additive mapping?

In 1941, for Banach spaces the Ulam problem was first solved by D. H. Hyers ([7]) by proving that if $\delta>0$ and $f: E_{1} \rightarrow E_{2}$ is a mapping with E_{1}, E_{2} Banach spaces, such that $\|f(x+y)-f(x)-f(y)\| \leq \delta$ for all $x, y \in E_{1}$, then there exists a unique additive mapping $T: E_{1} \rightarrow E_{2}$ such that $\|f(x)-T(x)\| \leq \delta$ for all $x \in E_{1}$.

In 1978, Th. M. Rassias ([11]) gave a generalization of the Hyers' result in the following way: Let E_{1} and E_{2} be a normed space and a Banach space, respectively, and $f: E_{1} \rightarrow E_{2}$ a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ (the real field) for each fixed $x \in E_{1}$. Assume that there exist constants $\theta \geq 0$ and $p \in[0,1)$ such that $\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in E_{1}$. Then there exists a unique \mathbb{R}-linear mapping $T: E_{1} \rightarrow E_{2}$ such that $\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}$ for all $x \in E_{1}$.

In connection with the facts above, the stability problems of functional equations have been extensively investigated by many mathematicians (see, for example, [2], [3], [4], [5], [6], [8], [9]).

Recently T. Trif ([12]) studied the Hyers-Ulam-Rassias stability of the Popoviciu's functional equation (from [10]) for normed spaces which is the Jensen type

Received October 8, 2001.

2000 Mathematics Subject Classification: 39B72, 47 H 15.
Key words and phrases: stability, Popoviciu's functional equation, Banach module.
\dagger This work was supported by Korean Research Foundation Grant (KRF-2002-075C00002) .
functional equation

$$
3 f\left(\frac{x+y+z}{3}\right)+f(x)+f(y)+f(z)=2\left[f\left(\frac{x+y}{2}\right)+f\left(\frac{y+z}{2}\right)+f\left(\frac{z+x}{2}\right)\right]
$$

We here extend the Hyers-Ulam-Rassias stability of the Popoviciu's functional equation to Banach modules over a Banach algebra, and obtain some related results.

2. Results

Throughout this section, let B be a unital normed algebra with norm $|\cdot|$ over the complex field \mathbb{C}, and let ${ }_{B} \mathbb{B}_{1}$ and ${ }_{B} \mathbb{B}_{2}$ be a left normed B-module and a left Banach B-module with norms $\|\cdot\|$ and $\|\cdot\|$, respectively.

Note that a mapping $f:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ is called B-linear if $f(a x)=a f(x)$ for all $a \in B$ and all $x \in{ }_{B} \mathbb{B}_{1}$.

Given a function $f:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$, we set

$$
\begin{aligned}
D f(x, y, z):= & 3 f\left(\frac{a x+a y+a z}{3}\right)+a f(x)+a f(y)+a f(z) \\
& -2\left[a f\left(\frac{x+y}{2}\right)+f\left(\frac{a y+a z}{2}\right)+f\left(\frac{a z+a x}{2}\right)\right]
\end{aligned}
$$

for all $a \in B$ and all $x, y, z \in{ }_{B} \mathbb{B}_{1}$.
Theorem 1. Assume that $\delta, \theta \in[0, \infty)$ and that $p \in(0,1)$. Let $f:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ be a mapping such that

$$
\begin{equation*}
\|D f(x, y, z)\| \leq \delta+\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \tag{1}
\end{equation*}
$$

for all $a \in B$ with $|a|=1$ and all $x, y, z \in{ }_{B} \mathbb{B}_{1}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, then there exists a unique B-linear mapping $A:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that

$$
\|f(x)-f(0)-A(x)\| \leq \frac{\delta}{3}+\frac{\theta}{2^{1-p}-1}\|x\|^{p} \quad \text { for all } x \in{ }_{B} \mathbb{B}_{1}
$$

Proof. By [12, Theorem 3.1], it follows from the inequality of the statement for $a=1$ that there exists a unique additive mapping $A:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ satisfying the condition given in the statement. The additive mapping A given in the proof of $[12$, Theorem 3.1] is similar to the additive mapping given in the proof of [11, Theorem].

Using the same reasoning as in the proof of [11, Theorem] and the assumption that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, it follows that the additive mapping $A:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ is \mathbb{R}-linear.

Let $a \in B$ with $|a|=1$. Setting $y=x$ and $z=-2 x$ in (1), we get

$$
\begin{equation*}
\left\|3 f(0)+a f(-2 x)-4 f\left(-\frac{a}{2} x\right)\right\| \leq \delta+\theta\left(2+2^{p}\right)\|x\|^{p} \text { for all } x \in{ }_{B} \mathbb{B}_{1} \tag{2}
\end{equation*}
$$

Put $\varepsilon:=\delta+3\|f(0)\|$. From (2) we have

$$
\left\|a f(-2 x)-4 f\left(-\frac{a}{2} x\right)\right\| \leq \varepsilon+\theta\left(2+2^{p}\right)\|x\|^{p} \text { for all } x \in{ }_{B} \mathbb{B}_{1}
$$

Replacing x by $-2 x$ in the above relation yields

$$
\begin{equation*}
\|a f(4 x)-4 f(a x)\| \leq \varepsilon+\theta 2^{2 p}\left(1+2^{1-p}\right)\|x\|^{p} \text { for all } x \in{ }_{B} \mathbb{B}_{1} \tag{3}
\end{equation*}
$$

Using induction on n with (3), we see that

$$
\begin{equation*}
\left\|a f\left(2^{2 n} x\right)-4 f\left(2^{2(n-1)} a x\right)\right\| \leq \varepsilon+\theta 2^{2 n p}\left(1+2^{1-p}\right)\|x\|^{p} \tag{4}
\end{equation*}
$$

for all $x \in{ }_{B} \mathbb{B}_{1}$ and all positive integers n. Note that there exists a $K>0$ such that $\|a z\| \leq K|a|\|z\|$ for all $a \in B$ and all $z \in{ }_{B} \mathbb{B}_{2}$ by the definition of a normed module.

Now letting $a=1$ in (4) and then replacing x by $a x$ in the result, we obtain
(5) $\left\|f\left(2^{2 n} a x\right)-4 f\left(2^{2(n-1)} a x\right)\right\| \leq \varepsilon+\theta 2^{2 n p}\left(1+2^{1-p}\right)\|a x\|^{p}$

$$
\leq \varepsilon+\theta 2^{2 n p}\left(1+2^{1-p}\right) K^{p}\|x\|^{p} \text { for all } x \in{ }_{B} \mathbb{B}_{1}
$$

On account of (4) and (5), we get

$$
\begin{aligned}
\left\|f\left(2^{2 n} a x\right)-a f\left(2^{2 n} x\right)\right\|= & \| f\left(2^{2 n} a x\right)-4 f\left(2^{2(n-1)} a x\right) \\
& +4 f\left(2^{2(n-1)} a x\right)-a f\left(2^{2 n} x\right) \| \\
\leq & \left\|f\left(2^{2 n} a x\right)-4 f\left(2^{2(n-1)} a x\right)\right\| \\
& +\left\|a f\left(2^{2 n} x\right)-4 f\left(2^{2(n-1)} a x\right)\right\| \\
\leq & 2 \varepsilon+\left(K^{p}+1\right) 2^{2 n p}\left(1+2^{1-p}\right)\|x\|^{p}
\end{aligned}
$$

for all $x \in{ }_{B} \mathbb{B}_{1}$. So $2^{-2 n}\left\|f\left(2^{2 n} a x\right)-a f\left(2^{2 n} x\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in{ }_{B} \mathbb{B}_{1}$.
Hence we conclude that

$$
A(a x)=\lim _{n \rightarrow \infty} 2^{-2 n} f\left(2^{2 n} a x\right)=\lim _{n \rightarrow \infty} 2^{-2 n} a f\left(2^{2 n} x\right)=a A(x)
$$

for all $a \in B$ with $|a|=1$ and all $x \in{ }_{B} \mathbb{B}_{1}$. Since A is \mathbb{R}-linear and $A(c x)=c A(x)$ for each element $c \in B$ with $|c|=1$, we have

$$
\begin{aligned}
A(a x+b y) & =A(a x)+A(b y) \\
& =A\left(|a| \frac{a}{|a|} x\right)+A\left(|b| \frac{b}{|b|} y\right) \\
& =|a| A\left(\frac{a}{|a|} x\right)+|b| A\left(\frac{b}{|b|} y\right) \\
& =|a| \frac{a}{|a|} A(x)+|b| \frac{b}{|b|} A(y) \\
& =a A(x)+b A(y)
\end{aligned}
$$

for all $a, b \in B \backslash\{0\}$ and all $x, y \in{ }_{B} \mathbb{B}_{1}$. Thus the unique \mathbb{R}-linear mapping $A:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ is a B-linear mapping, as desired.

Corollary 1. Let E_{1} and E_{2} be a complex normed space and a complex Banach space, respectively. Let $f: E_{1} \rightarrow E_{2}$ be a mapping such that

$$
\|D f(x, y, z)\| \leq \delta+\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for $a=1$, i and all $x, y \in E_{1}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$, then there exists a unique \mathbb{C}-linear mapping $A: E_{1} \rightarrow E_{2}$, where \mathbb{C} is the complex field, such that

$$
\|f(x)-f(0)-A(x)\| \leq \frac{\delta}{3}+\frac{\theta}{2^{1-p}-1}\|x\|^{p} \quad \text { for all } x \in{ }_{B} \mathbb{B}_{1}
$$

Proof. Since \mathbb{C} is a complex Banach algebra, we see that E_{1} and E_{2} are considered as a normed \mathbb{C} - module and a Banach \mathbb{C} - module, respectively. By Theorem 1 , there exists a unique \mathbb{C}-linear mapping $A: E_{1} \rightarrow E_{2}$ satisfying the condition given in the statement.

Theorem 2. Let $\theta \in[0, \infty)$ and $p \in(1, \infty)$. Let $f:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ be a mapping satisfying $f(0)=0$ and

$$
\begin{equation*}
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right) \tag{6}
\end{equation*}
$$

for all $a \in B$ with $|a|=1$ and all $x, y, z \in{ }_{B} \mathbb{B}_{1}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, then there exists a unique B-linear mapping $A:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that

$$
\|f(x)-A(x)\| \leq \frac{2^{p-1}}{2^{p-1}-1} \theta\|x\|^{p} \quad \text { for all } x \in{ }_{B} \mathbb{B}_{1}
$$

Proof. By [12, Theorem 3.3], it follows from the inequality of the statement for $a=1$ that there exists a unique additive mapping $A:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ satisfying the condition given in the statement. The additive mapping A given in [12, Theorem 3.3] is similar to the additive mapping given in the proof of [11, Theorem].

Using the same reasoning as in the proof of [11, Theorem] and the assumption that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, it follows that the additive mapping $A:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ is \mathbb{R}-linear.

Let $a \in B$ with $|a|=1$. Putting $y=x$ and $z=-2 x$ in (6) we see, as in the proof of Theorem 1, that

$$
\|a f(-2 x)\|-4 f\left(-\frac{a}{2} x\right)\left\|\leq \theta\left(2+2^{p}\right)\right\| x \|^{p} \text { for all } x \in{ }_{B} \mathbb{B}_{1}
$$

Replacing x by $-\frac{x}{2}$ in the above relation yields

$$
\begin{equation*}
\left\|a f(x)-4 f\left(2^{-2} a x\right)\right\| \leq \theta\left(1+2^{p-1}\right) 2^{1-p}\|x\|^{p} \quad \text { for all } x \in{ }_{B} \mathbb{B}_{1} \tag{7}
\end{equation*}
$$

Starting from (7) it is easy to prove that

$$
\left\|a f\left(2^{-2 n} x\right)-4 f\left(2^{-2(n+1)} a x\right)\right\| \leq \theta\left(1+2^{p-1}\right) 2^{1-(2 n+1) p}\|x\|^{p}
$$

for all $x \in{ }_{B} \mathbb{B}_{1}$ and all positive integers n.
Following the similar method as in the proof of Theorem 1, we have

$$
\left\|f\left(2^{-2 n} a x\right)-a f\left(2^{-2 n} x\right)\right\| \leq\left(K^{p}+1\right) \theta\left(1+2^{p-1}\right) 2^{1-(2 n+1) p}\|x\|^{p}
$$

for all $x \in{ }_{B} \mathbb{B}_{1}$ and some $K>0$. So $2^{n}\left\|f\left(2^{-2 n} a x\right)-a f\left(2^{-2 n} x\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$ for all $x \in B_{B} \mathbb{B}_{1}$. The rest of the proof is similar to the corresponding part of the proof of Theorem 1.

Corollary 2. Let E_{1} and E_{2} be a complex normed space and a complex Banach space, respectively. Let $f: E_{1} \rightarrow E_{2}$ be a mapping such that

$$
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for $a=1, i$ and all $x, y \in E_{1}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in E_{1}$, then there exists a unique \mathbb{C}-linear mapping $A: E_{1} \rightarrow E_{2}$ such that

$$
\|f(x)-A(x)\| \leq \frac{2^{p-1}}{2^{p-1}-1} \theta\|x\|^{p} \quad \text { for all } x \in{ }_{B} \mathbb{B}_{1}
$$

Proof. The proof is similar to the one of Corollary 1 by using Theorem 2.
Theorem 3. Assume that $\delta, \theta \in[0, \infty)$ and that $p \in(0,1)$. Let B be a unital Banach $*$-algebra, and B^{+}the set of positive elements of B. Let $f: B_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ be a mapping such that

$$
\|D f(x, y, z)\| \leq \delta+\theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for all $a \in B^{+}$with $|a|=1$ or $a=i$, and all $x, y, z \in{ }_{B} \mathbb{B}_{1}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in{ }_{B} \mathbb{B}_{1}$, then there exists a unique B-linear mapping $A:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that

$$
\|f(x)-f(0)-A(x)\| \leq \frac{\delta}{3}+\frac{\theta}{2^{1-p}-1}\|x\|^{p} \quad \text { for all } x \in{ }_{B} \mathbb{B}_{1}
$$

Proof. By the same reasoning as in the proof of Theorem 1, there exists a unique \mathbb{R}-linear mapping $A:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that

$$
\|f(x)-f(0)-A(x)\| \leq \frac{\delta}{3}+\frac{\theta}{2^{1-p}-1}\|x\|^{p} \quad \text { for all } x \in{ }_{B} \mathbb{B}_{1} .
$$

By the same method as the proof of Theorem 2.1, we see that

$$
A(a x)=\lim _{n \rightarrow \infty} 2^{-2 n} f\left(2^{2 n} a x\right)=\lim _{n \rightarrow \infty} 2^{-2 n} a f\left(2^{2 n} x\right)=a A(x)
$$

for all $a \in B^{+}$with $|a|=1$ or $a=i$, and all $x \in{ }_{B} \mathbb{B}_{1}$, and so

$$
\begin{aligned}
A(a x+b y) & =a A(x)+b A(y) \\
A(i x) & =i A(x)
\end{aligned}
$$

for all $a, b \in B^{+} \backslash\{0\}$ and all $x, y \in{ }_{B} \mathbb{B}_{1}$. For any element $a \in B, a=a_{1}+i a_{2}$, where $a_{1}=\frac{a+a^{*}}{2}$ and $a_{2}=\frac{a-a^{*}}{2 i}$ are self-adjoint elements, furthermore, $a=a_{1}{ }^{+}$$a_{1}{ }^{-}+i a_{2}{ }^{+}-i a_{2}^{-}$, where $a_{1}{ }^{+}, a_{1}^{-}, a_{2}{ }^{+}$, and a_{2}^{-}are positive elements (see [1], Lemma 38.8). Therefore,

$$
\begin{aligned}
A(a x) & =A\left(a_{1}^{+} x a_{1}^{-} x+i a_{2}^{+} x-i a_{2}^{-} x\right) \\
& =a_{1}^{+} A(x) a_{1}^{-} A(x)+a_{2}{ }^{+} A(i x)-a_{2}^{-} A(i x) \\
& =a_{1}^{+} A(x)-a_{1}^{-} A(x)+i a_{2}^{+} A(x)-i a_{2}^{-} A(x) \\
& =\left(a_{1}^{+}-a_{1}^{-}+i a_{2}^{+}-i a_{2}^{-}\right) A(x) \\
& =a A(x)
\end{aligned}
$$

for all $a \in B$ and all $x \in{ }_{B} \mathbb{B}_{1}$. Hence $A(a x+b y)=A(a x)+A(b y) a A(x+b A(y)$ for all $a, b \in B$ and all $x, y \in{ }_{B} \mathbb{B}_{1}$. Thus there exists a unique B-linear mapping $A: B_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that

$$
\|f(x)-f(0)-A(x)\| \leq \frac{\delta}{3}+\frac{\theta}{2^{1-p}-1}\|x\|^{p} \text { for all } x \in{ }_{B} \mathbb{B}_{1}
$$

We complete the proof of the theorem.
Theorem 4. Assume that $\theta \in[0, \infty)$ and $p \in(1, \infty)$. Let B be a unital Banach *-algebra over \mathbb{C}, and B^{+}the set of positive elements of B. Let $f:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ be a mapping satisfying $f(0)=0$ such that

$$
\|D f(x, y, z)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}\right)
$$

for all $a \in B^{+}$with $|a|=1$ or $a=i$, and all $x, y, z \in{ }_{B} \mathbb{B}_{1}$. If $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in \mathbb{B}_{1}$, then there exists a unique B-linear mapping $A:{ }_{B} \mathbb{B}_{1} \rightarrow{ }_{B} \mathbb{B}_{2}$ such that

$$
\|f(x)-A(x)\| \leq \frac{2^{p-1}}{2^{p-1}-1} \theta\|x\|^{p} \quad \text { for all } x \in{ }_{B} \mathbb{B}_{1}
$$

Proof. The proof is similar to the one of Theorem 3.
Remark. In Theorem 1, 2, 3 and 4, when the difference

$$
\begin{aligned}
D f(x, y, z):= & 3 f\left(\frac{a x+a y+a z}{3}\right)+a f(x)+a f(y)+a f(z) \\
& -2\left[a f\left(\frac{x+y}{2}\right)+f\left(\frac{a y+a z}{2}\right)+f\left(\frac{a z+a x}{2}\right)\right]
\end{aligned}
$$

is replaced by

$$
\begin{aligned}
D f(x, y, z):= & 3 f\left(\frac{a x+a y+a z}{3}\right)+f(a x)+f(a y)+a f(z) \\
& -2\left[f\left(\frac{a x+a y}{2}\right)+f\left(\frac{a y+a z}{2}\right)+f\left(\frac{a z+a x}{2}\right)\right]
\end{aligned}
$$

or

$$
\begin{aligned}
D f(x, y, z):= & 3 f\left(\frac{a x+a y+a z}{3}\right) f(a x)+f(a y)+f(a z) \\
& -2\left[f\left(\frac{a x+a y}{2}\right)+a f\left(\frac{y+z}{2}\right)+a f\left(\frac{z+x}{2}\right)\right]
\end{aligned}
$$

the results do also hold.

References

[1] F. Bonsall and J. Duncan, Complete Normed Algebras, Springer-Verlag, New York, Heidelberg and Berlin, (1973).
[2] J. Brzdȩk, On the Cauchy difference on normed spaces, Abh. Math. Sem. Hamburg, 66(1996), 143-150.
[3] I.-S. Chang and H.-M. Kim, Hyers-Ulam-Rassias stability of a quadratic functional equation, Kyungpook Math. J., 42(2002), 71-86.
[4] I.-S. Chang and Y.-S. Jung, Stability of a functional equation deriving from cubic and quadratic functions, J. Math. Anal. Appl., 283(2)(2003), 491-500.
[5] S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Hamburg, 62(1992), 59-64.
[6] G. L. Forti, The stability of homomorphisms and amenability with applications to functional equations, Abh. Math. Sem. Hamburg, 57(1987), 215-226.
[7] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acade. Sci. U.S.A, 27(1941), 222-224.
[8] S.-M. Jung and P. K. Sahoo, On the Hyers-Ulam stability of a functional equation of Davison, Kyungpook Math. J., 40(2000), 87-92.
[9] Y.-S. Jung and K.-H. Park, On the stability of the functional equation $f(x+y+x y)=$ $f(x)+f(y)+x f(y)+y f(x)$, J. Math. Anal. Appl., 274(2)(2002), 659-666.
[10] T. Popoviciu, Sur certaines inégalités qui caractérisent les fonctions convexes, An Ştiint. Univ. Al. I. Cuza Iaşi Secţ. Ia Mat., 11(1965), 155-164.
[11] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[12] T. Trif, Hyers-Ulam-Rassias stability of a Jensen type functional equation, J. Math. Anal. Appl., 250(2000), 579-588.
[13] S. M. Ulam, "Problems in Modern Mathematics", Chap. VI, Wiley, New York, (1964).

