References
- T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66. https://doi.org/10.2969/jmsj/00210064
- F.F. Bonsall & J. Duncan: Complete normed algebras. Berlin-Heidelberg-New York, 1973.
- S. Czerwik: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. https://doi.org/10.1007/BF02941618
- H.G. Dales: Banach Algebras and Automatic Continuity. London Mathematical Society Monographs, New Series, 24. Oxford University Press, Oxford, 2000.
- H.G. Dales & M.S. Moslehian: Stability of mappings on multi-normed spaces. Glasgow Math. J. 49 (2007), no. 2, 321-332. https://doi.org/10.1017/S0017089507003552
- H.G. Dales & M.E. Polyakov: Multi-normed spaces and multi-Banach algebras. preprint.
- P. Gavruta: A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S.-M. Jung: Hyers-Ulam-Rassias stability of Jensens equation and its application. Proc. Amer. Math. Soc. 126 (1998), 3137-3143. https://doi.org/10.1090/S0002-9939-98-04680-2
- S.-M. Jung: Hyers-Ulam-Rassias Stability of Functional equations in Mathematical Analysis. Hadronic Press, Inc., Palm Harbor, Florida, 2001.
- Z. Kominek: On a local stability of the Jensen functional equation. Demonstratio Math. 22 (1989), 499-507.
- Y.-H. Lee & K.-W. Jun: A generalization of the Hyers-Ulam-Rassias stability of Jensens equation. J. Math. Anal. Appl. 238 (1999), 305-315. https://doi.org/10.1006/jmaa.1999.6546
- M.S. Moslehian, K. Nikodem & D. Popa: Asymptotic aspect of the quadratic functional equation in multi-normed spaces. J. Math. Anal. and Appl. 355 (2009), no. 2, 717-724. https://doi.org/10.1016/j.jmaa.2009.02.017
- M.S. Moslehian: Superstability of higher derivations in multi-Banach algebras. Tamsui Oxford J. Math. Sciences 24 (2008), no. 4, 417-427.
- L. Li, J. Chung & D. Kim: Stability of Jensen equations in the space of generalized functions. J. Math. Anal. Appl. 299 (2004), 578-586. https://doi.org/10.1016/j.jmaa.2004.05.036
- C. Park: On the stability of the linear mapping in Banach modules. J. Math. Anal. Appl. 275 (2002), 711-720. https://doi.org/10.1016/S0022-247X(02)00386-4
- T. Popoviciu: Sur certaines inegalites qui caracterisent les fonctions convexes. Stiint. Univ. Al. I. Cuza Iasi Sect. Ia Mat. 11 (1965), 155-164.
- Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th.M. Rassias: (Ed.): "Functional Equations and Inequalities". Kluwer Academic, Dordrecht, Boston, London, 2000.
- T. Trif: Hyers-Ulam-Rassias stability of a Jensen type functional equation. J. Math. Anal. Appl. 250 (2000), 579-588 https://doi.org/10.1006/jmaa.2000.6995
- S.M. Ulam: A Collection of Mathematical Problems. Interscience Publ., New York, 1960.