• Title/Summary/Keyword: Polynomial regression model

Search Result 215, Processing Time 0.027 seconds

Mathematical Analysis of Growth of Tobacco (Nicotiana tabaccum L.) II. A New Model for Growth Curve (담배의 생장반응에 관한 수리해석적 연구 제2보 담배생장곡선의 신모형에 관하여)

  • Kim, Y.A.;Ban, Y.S.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.1
    • /
    • pp.84-86
    • /
    • 1982
  • The experiment was conducted with three varieties (Hicks, Burley 21, and Sohyang) and cultivation type (Improved mulching, general mulching, and non mulching) of NC 2326 to model to curve of tabacco growth against time. The basic growth data were obtained by harvest method at intervals of ten days from transplanting at 7-8 times and analyzed by polynomial regression, orthogonal polynomial, and logarithmic transformation. It is shown that the C model of growth curve: T = A +$\sqrt{(1.4 AK + K)}$2K provides an excellent fit.

  • PDF

Determining Input Values for Dragging Anchor Assessments Using Regression Analysis (회귀분석을 이용한 주묘 위험성 평가 입력요소 결정에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.822-831
    • /
    • 2021
  • Although programs have been developed to evaluate the risk of dragging anchors, it is practically difficult for VTS(vessel traffic service) operators to calculate and evaluate these risks by obtaining input factors from anchored ships. Therefore, in this study, the gross tonnage (GT) that could be easily obtained from the ship by the VTS operators was set as an independent variable, and linear and nonlinear regression analyses were performed using the input factors as the dependent variables. From comparing the fit of the polynomial model (linear) and power series model (nonlinear), the power series model was evaluated to be more suitable for all input factors in the case of container ships and bulk carriers. However, in the case of tanker ships, the power supply model was suitable for the LBP(length between perpendiculars), width, and draft, and the polynomial model was evaluated to be more suitable for the front wind pressure area, weight of the anchor, equipment number, and height of the hawse pipe from the bottom of the ship. In addition, all other dependent variables, except for the front wind pressure area factor of the tanker ship, showed high degrees of fit with a coefficient of determination (R-squared value) of 0.7 or more. Therefore, among the input factors of the dragging anchor risk assessment program, all factors except the external force, seabed quality, water depth, and amount of anchor chain let out are automatically applied by the regression analysis model formula when only the GT of the ship is provided.

Estimation of fruit number of apple tree based on YOLOv5 and regression model (YOLOv5 및 다항 회귀 모델을 활용한 사과나무의 착과량 예측 방법)

  • Hee-Jin Gwak;Yunju Jeong;Ik-Jo Chun;Cheol-Hee Lee
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2024
  • In this paper, we propose a novel algorithm for predicting the number of apples on an apple tree using a deep learning-based object detection model and a polynomial regression model. Measuring the number of apples on an apple tree can be used to predict apple yield and to assess losses for determining agricultural disaster insurance payouts. To measure apple fruit load, we photographed the front and back sides of apple trees. We manually labeled the apples in the captured images to construct a dataset, which was then used to train a one-stage object detection CNN model. However, when apples on an apple tree are obscured by leaves, branches, or other parts of the tree, they may not be captured in images. Consequently, it becomes difficult for image recognition-based deep learning models to detect or infer the presence of these apples. To address this issue, we propose a two-stage inference process. In the first stage, we utilize an image-based deep learning model to count the number of apples in photos taken from both sides of the apple tree. In the second stage, we conduct a polynomial regression analysis, using the total apple count from the deep learning model as the independent variable, and the actual number of apples manually counted during an on-site visit to the orchard as the dependent variable. The performance evaluation of the two-stage inference system proposed in this paper showed an average accuracy of 90.98% in counting the number of apples on each apple tree. Therefore, the proposed method can significantly reduce the time and cost associated with manually counting apples. Furthermore, this approach has the potential to be widely adopted as a new foundational technology for fruit load estimation in related fields using deep learning.

Use of Support Vector Regression in Stable Trajectory Generation for Walking Humanoid Robots

  • Kim, Dong-Won;Seo, Sam-Jun;De Silva, Clarence W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.565-575
    • /
    • 2009
  • This paper concerns the use of support vector regression (SVR), which is based on the kernel method for learning from examples, in identification of walking robots. To handle complex dynamics in humanoid robot and realize stable walking, this paper develops and implements two types of reference natural motions for a humanoid, namely, walking trajectories on a flat floor and on an ascending slope. Next, SVR is applied to model stable walking motions by considering these actual motions. Three kinds of kernels, namely, linear, polynomial, and radial basis function (RBF), are considered, and the results from these kernels are compared and evaluated. The results show that the SVR approach works well, and SVR with the RBF kernel function provides the best performance. Plus, it can be effectively applied to model and control a practical biped walking robot.

Polynomial Fuzzy Radial Basis Function Neural Network Classifiers Realized with the Aid of Boundary Area Decision

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2098-2106
    • /
    • 2014
  • In the area of clustering, there are numerous approaches to construct clusters in the input space. For regression problem, when forming clusters being a part of the overall model, the relationships between the input space and the output space are essential and have to be taken into consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the structure in the input space with the mechanism of supervision implied by the distribution of data present in the output space. However, like other clustering methods, c-FCM focuses on the distribution of the data. In this paper, we introduce a new method, which by making use of the ambiguity index focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing classification procedures. The introduced design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials design aspects.

SUPPORT Applications for Classification Trees

  • Lee, Sang-Bock;Park, Sun-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.3
    • /
    • pp.565-574
    • /
    • 2004
  • Classification tree algorithms including as CART by Brieman et al.(1984) in some aspects, recursively partition the data space with the aim of making the distribution of the class variable as pure as within each partition and consist of several steps. SUPPORT(smoothed and unsmoothed piecewise-polynomial regression trees) method of Chaudhuri et al(1994), a weighted averaging technique is used to combine piecewise polynomial fits into a smooth one. We focus on applying SUPPORT to a binary class variable. Logistic model is considered in the caculation techniques and the results are shown good classification rates compared with other methods as CART, QUEST, and CHAID.

  • PDF

A polynomial mathematical tool for foundation-soil-foundation interaction

  • Sbartai, Badreddine
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.547-560
    • /
    • 2020
  • This paper studies the dynamic foundation-soil-foundation interaction for two square rigid foundations embedded in a viscoelastic soil layer. The vibrations come from only one rigid foundation placed in the soil layer and subjected to harmonic loads of translation, rocking, and torsion. The required dynamic response of rigid surface foundations constitutes the solution of the wave equations obtained by taking account of the conditions of interaction. The solution is formulated using the frequency domain Boundary Element Method (BEM) in conjunction with the Kausel-Peek Green's function for a layered stratum, with the aid of the Thin Layer Method (TLM), to study the dynamic interaction between adjacent foundations. This approach allows the establishment of a mathematical model that enables us to determine the dynamic displacements amplitude of adjacent foundations according to their different separations, the depth of the substratum, foundations masss, foundations embedded, and the frequencies of excitation. This paper attempts to introduce an approach based on a polynomial mathematical tool conducted from several results of numerical methods (BEM-TLM) so that practicing civil engineers can evaluation the dynamic foundations displacements more easy.

Design of Self-Organizing Fuzzy Polynomial Neural Networks Architecture (자기구성 퍼지 다항식 뉴럴 네트워크 구조의 설계)

  • Park, Ho-Sung;Park, Keon-Jun;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2519-2521
    • /
    • 2003
  • In this paper, we propose Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. It is shown that this network exhibits a dynamic structure as the number of its layers as well as the number of nodes in each layer of the SOFPNN are not predetermined (as this is the case in a popular topology of a multilayer perceptron). As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership function are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SOFPNN architectures, that is, the basic and modified one with both the generic and the advanced type. The superiority and effectiveness of the proposed SOFPNN architecture is demonstrated through nonlinear function numerical example.

  • PDF

Material Optimization of BIW for Minimizing Weight (경량화를 위한 BIW 소재 최적설계)

  • Jin, Sungwan;Park, Dohyun;Lee, Gabseong;Kim, Chang Won;Yang, Heui Won;Kim, Dae Seung;Choi, Dong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.16-22
    • /
    • 2013
  • In this study, we propose the method of optimally changing material of BIW for minimizing weight while satisfying vehicle requirements on static stiffness. First, we formulate a material selection optimization problem. Next, we establish the CAE procedure of evaluating static stiffness. Then, to enhance the efficiency of design work, we integrate and automate the established CAE procedure using a commercial process integration and design optimization (PIDO) tool, PIAnO. For effective optimization, we adopt the approach of metamodel based approximate optimization. As a sampling method, an orthogonal array (OA) is used for selecting sampling points. The response values are evaluated at the sampling points and then these response values are used to generate a metamodel of each response using the linear polynomial regression (PR) model. Using the linear PR model, optimization is carried out an evolutionary algorithm (EA) that can handle discrete design variables. Material optimization result reveals that the weight is reduced by 44.8% while satisfying all the design constraints.

An Analysis of Distributed Lag Effects of Expenditure by Type of R&D on Scientific Production: Focusing on the National Research Development Program (연구개발단계별 연구개발투자와 논문 성과 간의 시차효과 분석: 국가연구개발사업을 중심으로)

  • Pak, Cheol-Min;Ku, Bon-Chul
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.4
    • /
    • pp.687-710
    • /
    • 2016
  • This study aims to empirically estimate distributed lag effects of expenditure by type of R&D on scientific publication in the national R&D program. To analyze the lag structure between them, we used a dataset comprised of panel data from 104 technologies categorized by 6T (IT, BT, NT, ST, ET, CT) from 2007 to 2014, and employed multiple regression analysis based on the polynomial distributed lag model. This is because it is highly likely to emerge multicollinearity, if a distributed lag model without special restrictions is applied to multiple regression analysis. The main results are as follows. In the case of basic research, its lag effects are relatively evenly distributed during four years. On the other hand, the applied research and experimental development have distributed lag effects for three years and two years respectively. Therefore, when it comes to analyzing performance of scientific publication, it is necessary to be performed with characteristics of the time lag by type of R&D.