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Polynomial Fuzzy Radial Basis Function Neural Network Classifiers 
Realized with the Aid of Boundary Area Decision 

 
 

Seok-Beom Roh* and Sung-Kwun Oh† 
 

Abstract – In the area of clustering, there are numerous approaches to construct clusters in the 
input space. For regression problem, when forming clusters being a part of the overall model, the 
relationships between the input space and the output space are essential and have to be taken into 
consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the 
structure in the input space with the mechanism of supervision implied by the distribution of data 
present in the output space. However, like other clustering methods, c-FCM focuses on the distribution 
of the data. In this paper, we introduce a new method, which by making use of the ambiguity index 
focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing 
classification procedures. The introduced design is illustrated with the aid of numeric examples that 
provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials 
design aspects. 
 

Keywords: Polynomial fuzzy radial basis function neural network, Conditional fuzzy clustering, 
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1. Introduction 
 
Radial basis function (RBF) networks have been widely 

studied and applied to various tasks of regression and 
classification problem, cf. [16, 19]. Since the concepts of 
RBF neural networks were introduced in the literature 
[20], there have been a number of interesting and useful 
generalizations of the generic topology of these networks 
and their learning methods, cf. [1, 4, 12, 14]. The visible 
feature of RBF neural networks comes with their fast 
two-phase training method. During this learning process, 
the values of the parameters of the radial basis functions 
are determined independently from the weight values of 
the output layer. Typically, the parameters of the basis 
functions (referred to as receptive fields) are estimated 
by some relatively fast and general methods of 
unsupervised learning applied to input data. After the 
basis functions have been determined, the output layer’s 
weights are obtained as the least-squares solution to a 
system of linear equations (e.g., by using the Moore-
Penrose pseudo-inverse [2]). Compared to the nonlinear 
optimization that is usually considered in the training of 
neural networks, this two-stage method is usually much 
faster and can help avoid local minima and eliminate 
difficulties with the convergence of the overall learning 
process [13]. 

Let us look in more detail at this two-step design of 
RBF neural networks by highlighting the diversity of the 

optimization tools available there.  

(a) Optimization of the hidden layer: We encounter a 
significant variety of radial basis functions being used 
and face with diverse ways of their development. 
Discussed are such typical forms of RBFs as Gaussian 
functions. Other analytical versions of such functions 
are also available; see [5]. An alternative way of 
dealing with the formation of the RBFs (receptive 
fields) is to exploit various clustering techniques 
including its commonly encountered representatives 
such as K-means and Fuzzy C-Means (FCM) [19]. 
Furthermore, the optimization method such as Particle 
Swarm Optimization can be used to position the RBFs 
in the input space, refer to [21]. 

(b) Optimization of the output layer: For learning scheme 
for the linear neuron located at the output layer of the 
network, gradient-based methods and Expectation 
Maximization (EM)-based training method are in 
common usage, see [9, 11].  

 
Let us consider a way in how to locate the receptive 

fields of RBF neural networks (i.e., how to analyze and 
describe the input space which is inherently related with 
the output space through some unknown function whenever 
the output space is the real numbers space present in 
case of regression problems or the space of integers 
used in classification tasks). As noted above, various 
unsupervised clustering methods such as K-means and 
Fuzzy C-Means have been proposed to construct 
receptive fields. In particular, for regression problems, 
Pedrycz [18] has pointed at a certain drawback of the 
original objective function based clustering techniques 
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such as Fuzzy C-Means clustering. This shortcoming, 
which is commonly encountered when using the 
clustering methods based on the minimization of the 
objective function to form linguistic terms of a fuzzy 
model over the input space, is that all of those terms are 
formed in a completely unsupervised manner even though 
there is some component of supervision available which 
comes in the form of dependent (output) variables. To 
alleviate this shortcoming and take into account infor-
mation about the output space, the Conditional Fuzzy C-
means (c-FCM) clustering has been proposed. Given that 
the information about the output is used in the method, it 
brings some component of supervision to the clustering 
process. 

In this study, we develop a concept of RBF neural 
networks based on the supervisory clustering (supervision-
augmented clustering) which relates with supervisory 
clustering realized for regression problems. Furthermore, 
when dealing with classification problems, the supervisory 
clustering has to be activated within the boundary area 
occupied by patterns to be classified. We define the 
boundary area as a certain region of the input space where 
the data (patterns) belonging to different classes are located. 
Given a mixture of data coming from different classes or 
associated with a substantial variety of output’s values, the 
boundary region can be regarded as a source of useful 
discriminatory information. In contrast, the regions of the 
input space associated within the core of each class (where 
by the core we mean a region of the input space being 
predominantly occupied by patterns belonging to the 
same class) might be a limited source of discriminatory 
information.  

In order to activate the supervised clustering within 
the boundary area, we describe this area by using several 
linguistic terms (quantified in terms of fuzzy sets). This 
approach is legitimate considering that fuzzy sets are 
naturally geared to describe concepts (here classes) 
exhibiting overlap with elements belonging to other 
classes. After determining the boundary area, we invoke 
supervisory clustering to analyze the structure of the space. 
The performance of the proposed classifier is contrasted 
with the results produced by polynomial Fuzzy Radial 
Basis Function Neural Networks (pFRBF NNs). To 
show the classification abilities of the proposed classifier 
preferred to the various types of classifiers, we compare the 
generalization ability of the proposed classifier with the 
well-known classifiers.  

This study is organized as follows. In Section 2, we 
review the generic architecture of the generic RBF NNs 
and the extended RBF NNs. Next, in Section 3, we propose 
and elaborate on the pFRBF NNs classifiers focused on the 
boundary decision area and conditional fuzzy clustering. 
Extensive experimental studies are covered in Section 5 
while Section 6 offers some concluding comments.  

 
 

2. Architecture of the Extended pRBFNNs 
 
Several researches have said that the generic pFRBF 

NNs exhibit some advantages including global optimal 
approximation and classification capabilities as well as 
rapid convergence of the underlying learning procedures, 
see [6, 8]. The generic topology of pFRBF NNs is depicted 
in Fig. 1. 

In Fig. 1, Gi, i=1, 2,…, c denotes receptive fields (radial 
basis functions), while “m” stands for the number of the 
input variables. The output of the generic pFRBF NN 
comes as a linear combination of the outputs ( Γ( )x ) of the 
corresponding nodes at the hidden layer with the 
connection weights 1 2, , , cw w wL  as shown below 
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activation level of the i-th node present at the hidden layer. 
Generally, the Gaussian type pFRBFs are used as 
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where iv  and iσ  are the apex (center) and the spread of 
the ith receptive field, respectively.  

There are two major differences between the extended 
pFRBF NNs and the generic version of pFRBF NNs. The 
first one concerns the type of the underlying receptive 
fields. In the extended pFRBF NNs, the prototypes of the 
receptive fields (i.e., the nodes of the hidden layer) are 
determined by running fuzzy clustering. The output of each 
node in the hidden layer is an activation level of the 
corresponding linguistic term (fuzzy set)  

 

 
Fig. 1. General architecture of the generic pFRBF Neural 

Networks 
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The second difference arises in terms of the type of the 

connection (weights) between the hidden layer and output 
layer. In the extended pFRBF NNs, we use linear functions 
or the 2nd order polynomials rather than confining 
ourselves to some fixed numeric values. The architecture 
of the extended pFRBF NN and the type of connection 
weights considered above is shown in Fig. 2. 

In Fig. 2, if  denotes the connection (weight) between 
the ith node of hidden layer and the node in the output layer. 
The connection if  is expressed as a linear function or the 
2nd order polynomial. More specifically, we have  
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Here,  
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The activation level of each node in the hidden layer is 

determined using (3). The normalized activation level iku  
follows the expression  
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The following relationship holds 
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For the output node we obtain 
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3. The Development of The pFRBFNN Classifier 
Activated Within the Boundary Area 

 
When we consider a two class problem, as elaborated on 

in the introduction, we use the extended pFRBF NNs to be 
used as the primary classifier whose receptive fields are 
constructed by running supervised clustering (i.e., the 
conditional fuzzy C-Means). 

The basic conjecture coming with the proposed classifier 
is that more ambiguous information is present within the 
boundary area than with the core area (generally speaking, 
the core area has homogeneous patterns belonging to the 
same class whereas the boundary area typically embraces 
patterns belonging to several classes). 

The boundary surface is formed within boundary area. In 
this paper, the boundary surface (area) for each class is 
determined by using the extended pFRBF NNs as already 
presented in Section II. The output of extended pFRBF 
NNs is aggregated through a certain linear combination of 
the local models, which describe the relationship between 
the input variables and the output variables present within 
the related local areas. The local model (i.e., the linear 
function or the 2nd order polynomial) of pFRBF NNs 
defines the local boundary surface, which is formed within 
the local area defined by the receptive field.  

We anticipate that the improvement of classification 
performance becomes associated with the use of the 
receptive fields that are positioned within the boundary area. 

 
3.1 Defining the boundary area 

 
Let us recall that the boundary area pertains to the 

region in the input space in which we encounter patterns 
belonging to different classes. In contrast, the core area 
(region) is highly homogeneous where there are data 
belonging to the same class. Fig. 3 illustrates some core 
and boundary areas formed for the two-class data. 

In order to define the boundary areas by using linguistic 
terms, the data patterns involved in each class are 
previously analyzed by the Possibilistic C-Means (PCM) 
clustering. As far as data set is concerned, we consider a 

 
Fig. 2. Architecture of the extended pFRBF Neural 

Networks 
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finite set of ‘‘n’’ input-output data coming in the form of 
the ordered pairs{ , }k kgx , 1, 2, ,k n= L , m

k ÎÂx , while 
{1, 2, , }kg lÎ L , l is the number of classes. The output 

variable kg  is the class label. Denote by iL  the set of 
indices of the data pattern involved in the i-th class. 

 
 { | , 1, 2, , }i kL k g i k n= = = L   (9) 

 
The original FCM uses the probabilistic constraint 

meaning that the membership grades for the same data 
sum up to one. While this is useful in forming the partition, 
the membership values resulting from the FCM and the 
related methods, however, may not always correspond to 
the intuitive concept of degree of belongingness, compati-
bility or typicality (commonality) as noted in the literature. 
Krishnapuram and Keller relaxed this constraint and 
introduced possibilistic clustering (PCM) by minimizing 
the following objective function 
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where iη  is a certain positive number, and “p” is a 
fuzzification coefficient that should be determined as any 
real number greater than 1 which is the same parameter as 
that is used in the ordinary FCM.  

The first term requires that the distances from data 
points to the prototypes be as low as possible while the 
second term forces the values of iku  to be as large as 
possible, thus avoiding running into a trivial solution. It is 
recommended to select iη  as discussed in [10], that is 
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Typically, the value of K is chosen to be equal to 1. The 

update of the prototypes is realized in the same way as this 
has been done in the FCM algorithm,  
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The membership degree (partition matrix) in the PCM is 
calculated as follows 
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We determine the prototypes and the activation levels for 

each class separately. The prototypes of class “j” (i.e. 
kg j= ) is calculated as follows 
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j
iv  is the prototype of the i-th cluster of the j-class, jn  

is the number of elements of the index set jL , and 
{ }j kL means the k-th element of the index set jL . 
The activation level of the i-th cluster for the j-class is 

calculated as follows. 
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available in the j-th class. 
Note that these expressions are the modified versions of 

(12) and (13). 
The higher the activation levels (15) are, the more 

visibly the data is involved in the core area of the 
corresponding class. 

After calculating the activation levels and prototypes for 
all classes, we define the boundary area as follows. 

 

 ( )( )1 2( ) ,k ik jkB S T u u=x , 1, ,i C= L and 1, ,j C= L  (16) 

 
Here T stands for some t-norm and S denotes a certain t-

conorm (s-norm). In this study, the t-norm is realized as the 
minimum operator and the t-conorm is specified as the 
probabilistic sum. 

1
iku  and 2

jku  denote the activation levels of the i-th 
cluster of “1” class and the j-th cluster of “2” class, 
respectively. As shown in Fig. 4, with 2 classes where each 
class is composed of 2 clusters, the boundary area is 
defined in the following form 

 
(a) Core area           (b) Boundary area 

Fig. 3. Examples of core and boundary areas 
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( ) ( ) ( ) ( )( )1 2 1 2 1 2 1 2
1 1 1 2 2 1 2 2( ) , , , , , , ,k k k k k k k k kB S T u u T u u T u u T u u=x

  (17) 
 

3.2 Conditional fuzzy C-Means clustering within 
boundary area 

 
The idea of Conditional Fuzzy C-Means (c-FCM, for 

short) clustering proposed in [18] was applied to the design 
of pFRBF neural networks as presented in [19]. To 
elaborate on the essence of the method, let us consider a set 
of patterns 1 2{ , , , }N=X x x xL , m

k ÎÂx (where m stands 
for the dimensionality of the input space) along with an 
auxiliary information granule, which is defined as the 
boundary area. Each element of X is then associated with 
the auxiliary information granule (fuzzy set) B given by 
(16).  

In conditional clustering, the data pattern kx is clustered 
by taking into consideration the conditions (auxiliary 
information expressed in the form given by 1( ),B x  

2( ), , ( )nB Bx xL ) based on some linguistic term expressed 
as a fuzzy set B ( : [0,1]B Â® ). The objective function 
used in the conditional fuzzy clustering is the same as the 
one used in the FCM, namely  
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where J  is the objective function, iku  is the activation 
level associated with the linguistic term B defining the 
boundary area, iv  is the ith cluster and c is the number of 
rules (clusters) formed for this context. The difference 
between the FCM and c-FCM comes in the form of the 
constraint imposed on the partition matrix where we now 
have 
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Here, ( )kB x  is the linguistic term (fuzzy set) which 

means the activation level how much the input data kx  is 

involved in the boundary area. Now the optimization 
problem is formulated in the following form 
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The iterative optimization scheme is governed by the 

two update formulas using which we successively modify 
the partition matrix and the prototypes 
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3.3 pRBFNNs classifier- The use of conditional fuzzy 

C-Means clustering and a focus on the boundary 
area 

 
In what follows, we propose the pFRBF NNs classifier 

developed by the c-FCM clustering supervised by the 
linguistic term, which specifies the boundary area. 

As mentioned earlier, we assume that in order to 
improve the classification performance one has to locate 
the pFRBFs within the boundary area. pFRBF NNs is 
composed of the linear combination of the local models, 
which are defined on the local areas (receptive fields). In 
this way, the pFRBF NNs classifier can be regarded as a 
linear combination of the local boundary surfaces. 

The local models of the pFRBF NNs are activated within 

 

Fig. 4. Examples of the Boundary Area associated with the 
corresponding values of a-cuts of the fuzzy 
clusters (membership functions) 

 
Fig. 5. The overall development of the proposed classifier 

based on the extended pFRBF NNs, boundary area 
decision, and c-FCM 
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the receptive fields (pFRBFs). Therefore, the pFRBFs 
located within the boundary area have the potential to form 
the “sound” boundary surface. Fig. 5 shows an overall 
development process of the proposed classifier. 

As shown in Fig. 2, the output of the proposed pFRBF 
NNs classifier comes as the linear combination of the 
connection weights such as ( 1 2, , , cf f fL ) with the 
activation levels of each node of the hidden layer 
( 1 2Γ , Γ , , ΓcL ). The way to calculate the output of the 
network of the proposed classifier is similar to the output 
of the extended pFRBF NNs. However, the activation 
levels of each pFRBF of the proposed model are described 
by using (21) which is quite different from the description 
provided by (2) and (6). 

To estimate the connections we use the orthogonal least 
square method and the weighted least square estimation 
method. Proceeding with the optimization details, the 
objective function of Least Square Estimation (LSE) reads 
as follows 
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The optimal values of the coefficients are expressed in a 

well-known manner 
 

 1( ) ( )T T-=a Θ Θ Θ G   (24) 
 
When we use the weighted LSE to estimate the 

coefficients of local models, we assume that each data 
patterns comes with its priority and data patterns with high 
priority significantly affect the estimation process whereas 
data with low priority participate to a limited degree and 
can be almost neglected. The activation levels of the 
linguistic variable defining the boundary area can be 
considered as the priority index. As said earlier, we 
emphasize the data positioned within the boundary area.  

Unlike the conventional LSE, the objective function of 
the weighted LSE is defined as follows 
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In the above expression, q denotes the linguistic 

modifier of the activation level of the boundary area. If the 
values of q get higher than 1, we arrive at higher specificity 
of the underlying linguistic information while an opposite 
effect becomes present when dealing with the lower values 
of q [3]. Note that the diagonal partition matrix D  is the 
reduced matrix, which is composed of the activation levels 
of all data pairs to the linguistic term B as the diagonal 
elements. 

The optimal values of the coefficients by using the 
weighted LSE are expressed in a well-known manner. 
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The final output of the pFRBF NNs comes in the form 
 

 ˆ =Y Θa   (27) 
 
The estimated class label is calculated by using the 

decision rule 
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4. Experimental Study 
 
In order to evaluate and quantify the classification 

effectiveness of the proposed classifier, the proposed 
classifier is experimented with by making use of a series 
of numeric data such as two synthetic datasets and several 
Machine Learning datasets (http://www.ics.uci.edu/~ 
mlearn/MLRepository.html). In the assessment of the 
performance of the classifiers, we use the error rate of the 
resulting classifier.  

We investigate and report the results of each experiment 
in terms of the mean and the standard deviation of the 
performance index. We consider some predefined values 
of the parameters of the network whose values are 
summarized in Table 1. The choice of these particular 
numeric values has been motivated by the need to come up 

Table 1. Selected Numeric Values of the Parameters of the 
Proposed Model 

Parameter Value 
Polynomial order (O) 0 (constant), 1 (linear), or 2 (quadratic) 

Number of pFRBFs (c) 2 ~ 10 

Fuzzification Coefficient (p) In the range of 1.2~3.0  
varying with step of 0.2 

Linguistic Modifier (q) 1.0 or 2.0 
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with a possibility to investigate of the performance of the 
model in a fairly comprehensive range of scenarios. 

In what follows, we report on several experiments 
dealing with some machine learning data sets (http://www. 
ics.uci.edu/~mlearn/MLRepository.html). For simplicity, 
we deal with two class- problems (the classifier can be 
extended to deal with more than two classes). The 
experiments were repeated 10 times using a random split of 
data into 70%-30% training and testing subsets. Table 2 
contrasts the classification error of the proposed classifier 
with other well-known methods known in the literature 
[17]. In this experiments, the generic type basic neural 
networks (NNs), principal component analysis (PCA) and 
linear discriminant analysis (LDA) are used. Support 
vector machine (SVM) is available in a MATLAB toolbox, 
see http://theoval.sys.uea.ac.uk/~gcc/svm/toolbox/. For the 
decision tree methods, the code of C4.5 trees was coming 
from the Classification Toolbox of MATLAB (http://www. 
yom-tov.info/cgi-bin/list_uploaded_files.pl) and the decision 
trees used some functions coming from the Statistics 
Toolbox of MATLAB. 

Table 3 shows the comparison between the proposed 
classifier and the classification methods based on the 
boundary analysis. In this experiments, we use 10 fold 

cross validation to evaluate the classification abilities 
and the final correct classification ratio is given in terms 
of its average and the standard deviation. From the 
results in Table VI, we can see that the proposed 
classifier is better than the LBDA based classifiers in 
terms of the classification abilities achieving higher 
classification rates. 

 
 

5. Conclusion 
 
In this paper, we proposed the new design methodology 

of polynomial fuzzy radial basis function neural networks 
for the classification problem. Unlike the usual design 
method of RBFs, the proposed design method concentrate 
on a detailed description of the boundary regions in the 
feature space. The learning algorithm used to in the 
development of the conclusion part of the rules takes 
advantage of the linear discriminant analysis. To 
evaluate the proposed model for classification problem, 
we completed several experiments using 2-dimensional 
synthetic datasets and a number of machine learning 
datasets.  

 

Table 2. Results of comparative analysis (The best results are shown in boldface) 

Classifiers Pima Heart WDBC WPBC Ionosphere Sonar German 
LSE O=1 21.83±1.7 13.46±2.2 2.98±1.4 18.97±4.4 11.14±3.3 22.42±5.4 22.03±1.8 
LSE O=2 21.22±1.8 13.83±2.5 3.80±1.3 24.66±5.5 12.19±3.4 26.29±5.8 22.33±1.9 

WLSE q=1, O=1 21.04±1.8 13.46±4.0 3.04±1.3 17.93±2.3 11.24±3.0 15.32±5.3 22.23±1.7 
WLSE q=1, O=2 21.22±1.8 13.58±3.0 3.57±0.7 24.14±4.6 10.38±2.4 13.39±3.7 21.63±2.1 
WLSE q=2, O=1 20.87±2.0 13.95±3.1 2.75±1.0 18.28±4.5 11.14±3.7 14.35±5.3 21.93±1.4 

Proposed 
model 

WLSE q=2, O=2 20.91±2.3 13.21±2.3 3.63±1.4 25.52±5.7 10.00±2.6 13.55±4.4 21.87±1.4 
O=1 21.04±1.9 15.19±3.0 3.04±0.8 19.66±2.7 11.24±2.0 24.03±6.4 22.4±1.2 RBF NNs O=2 21.30±1.9 15.06±2.8 4.09±1.3 27.24±6.6 12.76±4.7 26.77±5.2 22.0±2.5 

Standard NNs [17] 28.13±4.8 21.23±5.0 4.44±1.6 27.07±3.3 18.95±3.4 34.19±8.7 28.4±1.8 
O=1 21.9±2.9 14.7 ± 2.1 2.9± 1.2 22.2±4.5 10.9±2.8 17.9±3.1 22.7±1.4 P-RBF  

NNS [17] O=2 24±2.1 14.8± 3.2 3.2± 1.2 35.2±5.8 12.2±3.1 17.4±5.3 23.3±1.2 
PCA [17] 29.87 ±2.6 38.15±3.5 8.07±2.0 31.38±5.2 10.19±1.7 16.77±3.6 33.97±2.5 
SVM [17] 34.78±0.0 44.44±0.0 37.43±0.0 24.14±0.0 5.81±2.6 18.23±4.4 30.0±0.0 
LDA[17] 34.43±1.8 32.84±10.1 3.27±1.0 24.14±2.2 20.19±4.2 24.52±3.9 30.87±2.6 

C4.5 trees [17] 32.43±3.1 29.63±7.2 8.25±2.3 33.62±6.0 8.38±1.5 36.45±7.6 30.7±0.9 
Decision Tree [17] 27.39±3.6 24.81±6.1 7.13±1.8 24.83±2.2 11.43±2.8 31.45±8.6 26.47±1.5 

 
Table 3. Results of comparative analysis with the other classification methods based on the boundary analysis (The best 

results are shown in boldface) 

Classifiers Pima WDBC WPBC Ionosphere Sonar 
O=1 78.27±5.12 97.18±1.71 83.38±7.51 91.09±4.99 81.73±9.96 LSE 
O=2 78.37±4.01 97.02±2.31 80.01±9.96 91.23±4.61 79.39±5.60 
O=1 78.39±2.14 97.03±2.03 82.08±8.69 91.17±6.36 87.52±8.01 WLSE (q=1) 
O=2 78.40±3.01 97.01±2.22 79.23±8.42 90.62±5.59 87.52±5.99 
O=1 78.13±5.32 97.01±0.84 83.44±10.8 91.46±3.62 89.42±5.12 

Proposed  
model 

WLSE (q=2) 
O=2 78.12±4.06 97.02±2.19 79.02±10.6 90.89±3.52 90.42±7.25 

LBDA+NN(non) 76.16±0.06 94.90±0.05 77.34±0.14 88.36±0.29 84.32±0.06 LBDA based  
Classifier [15] LBDA+NN(all) 70.43±0.08 95.62±0.04 73.16±0.20 91.38±0.07 86.42±0.12 

SMO (SVM)[22] 76.63 96.85 Not Available Not Available Not Available 
Robust SVM[24] 77±3.0 Not Available 77±3.0 Not Available 90.0±3.0 

PDFC [24] 77±2.0 Not Available 0.81±7.0 Not Available 90.0±2.0 
LBDA - linear boundary discriminant analysis. LBDA+NN(non) uses only non-boundary patterns to train Nearest Neighbor classifier, while 
LBDA+NN(all) uses all patterns to train the same classifier. 
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