• 제목/요약/키워드: Polynomial Model

검색결과 886건 처리시간 0.027초

퍼지 결합 다항식 뉴럴 네트워크 (Fuzzy Combined Polynomial Neural Networks)

  • 노석범;오성권;안태천
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1315-1320
    • /
    • 2007
  • In this paper, we introduce a new fuzzy model called fuzzy combined polynomial neural networks, which are based on the representative fuzzy model named polynomial fuzzy model. In the design procedure of the proposed fuzzy model, the coefficients on consequent parts are estimated by using not general least square estimation algorithm that is a sort of global learning algorithm but weighted least square estimation algorithm, a sort of local learning algorithm. We are able to adopt various type of structures as the consequent part of fuzzy model when using a local learning algorithm. Among various structures, we select Polynomial Neural Networks which have nonlinear characteristic and the final result of which is a complex mathematical polynomial. The approximation ability of the proposed model can be improved using Polynomial Neural Networks as the consequent part.

다항 위험함수에 근거한 NHPP 소프트웨어 신뢰성장모형에 관한 연구 (A Study for NHPP software Reliability Growth Model based on polynomial hazard function)

  • 김희철
    • 디지털산업정보학회논문지
    • /
    • 제7권4호
    • /
    • pp.7-14
    • /
    • 2011
  • Infinite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rate per fault (hazard function). This infinite non-homogeneous Poisson process is model which reflects the possibility of introducing new faults when correcting or modifying the software. In this paper, polynomial hazard function have been proposed, which can efficiency application for software reliability. Algorithm for estimating the parameters used to maximum likelihood estimator and bisection method. Model selection based on mean square error and the coefficient of determination for the sake of efficient model were employed. In numerical example, log power time model of the existing model in this area and the polynomial hazard function model were compared using failure interval time. Because polynomial hazard function model is more efficient in terms of reliability, polynomial hazard function model as an alternative to the existing model also were able to confirm that can use in this area.

Development of Korean VTEC Polynomial Model Using GIM

  • Park, Jae-Young;Kim, Yeong-Guk;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.297-304
    • /
    • 2022
  • The models used for ionosphere error correction in positioning using Global Navigation Satellite System (GNSS) are representatively Klobuchar model and NeQuick model. Although these models can correct the ionosphere error in real time, the disadvantage is that the accuracy is only 50-60%. In this study, a method for polynomial modeling of Global Ionosphere Map (GIM) which provides Vertical Total Electron Content (VTEC) in grid type was studied. In consideration of Ionosphere Pierce Points (IPP) of satellites with a receivable elevation angle of 15 degrees or higher on the Korean Peninsula, the target area for model generation and provision was selected, and the VTEC at 88 GIM grid points was modeled as a polynomial. The developed VTEC polynomial model shows a data reduction rate of 72.7% compared to GIM regardless of the number of visible satellites, and a data reduction rate of more than 90% compared to the Slant Total Electron Content (STEC) polynomial model when there are more than 10 visible satellites. This VTEC polynomial model has a maximum absolute error of 2.4 Total Electron Content Unit (TECU) and a maximum relative error of 9.9% with the actual GIM. Therefore, it is expected that the amount of data can be drastically reduced by providing the predicted GIM or real-time grid type VTEC model as the parameters of the polynomial model.

Selection of Data-adaptive Polynomial Order in Local Polynomial Nonparametric Regression

  • Jo, Jae-Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제4권1호
    • /
    • pp.177-183
    • /
    • 1997
  • A data-adaptive order selection procedure is proposed for local polynomial nonparametric regression. For each given polynomial order, bias and variance are estimated and the adaptive polynomial order that has the smallest estimated mean squared error is selected locally at each location point. To estimate mean squared error, empirical bias estimate of Ruppert (1995) and local polynomial variance estimate of Ruppert, Wand, Wand, Holst and Hossjer (1995) are used. Since the proposed method does not require fitting polynomial model of order higher than the model order, it is simpler than the order selection method proposed by Fan and Gijbels (1995b).

  • PDF

계측결과에 의한 절토사면의 거동 및 파괴예측 (Failure Prediction and Behavior of Cut-Slope based on Measured Data)

  • 장서용;한희수;김종렬;마봉덕
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권3호
    • /
    • pp.165-175
    • /
    • 2006
  • 사면거동 및 파괴를 분석하기 위하여, 일반적으로 암반사면에는 Polynomial model, 토사사면에는 Growth model을 별도로 적용하여 사용하여 왔다. 이 기법은 사면의 파괴예측보다 사면의 누적변위를 묘사하기 위한 그래프 형태 위주이다. 따라서 본 연구에서는 사면의 거동보다는 파괴 예측에 초점을 맞추어 일반적으로 사용되는 두 모델을 병합하여 파괴예측을 위한 Asymptote(점근선)과 누적변위량도 같이 묘사할 수 있는 3차 방정식 모델 (3-degree polynomial model)로 단일화 할 것을 제안하여 현장 계측 data를 분석하였다. 국도 절취 사면부인 단양군 고수재 사면과 영덕군 축산면에 위치한 영덕 사면에 본 해석 모델을 적용하였다. 고수재는 토사사면으로 Growth model에 다른 거동을 나타내었고, 영덕사면은 Polynomial model에 따른 거동을 나타내었다. 분석결과, Polynomial model 과 Growth model로 구분된 해석 모델 형태를 $y=ax^3+bx^2+cx+d$ 의 형태를 가지는 3차 방정식을 사용하면, 하나의 모델로 사면의 거동 및 파괴를 해석할 수 있으며, 그 거동 해석 및 파괴 예측능력이 더 우수하다는 것이 증명되었다. Polynomial model의 경우, 방정식의 차수를 증가시켜도, 그래프의 $R^2$값과 형태가 유사함을 알 수 있었다.

GMDH 알고리즘과 다항식 퍼지추론에 기초한 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks based on GMDH algorithm and Polynomial Fuzzy Inference)

  • 박호성;윤기찬;오성권
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.130-133
    • /
    • 2000
  • In this paper, a new design methodology named FNNN(Fuzzy Polynomial Neural Network) algorithm is proposed to identify the structure and parameters of fuzzy model using PNN(Polynomial Neural Network) structure and a fuzzy inference method. The PNN is the extended structure of the GMDH(Group Method of Data Handling), and uses several types of polynomials such as linear, quadratic and modified quadratic besides the biquadratic polynomial used in the GMDH. The premise of fuzzy inference rules defines by triangular and gaussian type membership function. The fuzzy inference method uses simplified and regression polynomial inference method which is based on the consequence of fuzzy rule expressed with a polynomial such as linear, quadratic and modified quadratic equation are used. Each node of the FPNN is defined as fuzzy rules and its structure is a kind of neuro-fuzzy architecture Several numerical example are used to evaluate the performance of out proposed model. Also we used the training data and testing data set to obtain a balance between the approximation and generalization of proposed model.

  • PDF

다중 목적 입자 군집 최적화 알고리즘 이용한 방사형 기저 함수 기반 다항식 신경회로망 구조 설계 (Structural Design of Radial Basis Function-based Polynomial Neural Networks by Using Multiobjective Particle Swarm Optimization)

  • 김욱동;오성권
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.135-142
    • /
    • 2012
  • In this paper, we proposed a new architecture called radial basis function-based polynomial neural networks classifier that consists of heterogeneous neural networks such as radial basis function neural networks and polynomial neural networks. The underlying architecture of the proposed model equals to polynomial neural networks(PNNs) while polynomial neurons in PNNs are composed of Fuzzy-c means-based radial basis function neural networks(FCM-based RBFNNs) instead of the conventional polynomial function. We consider PNNs to find the optimal local models and use RBFNNs to cover the high dimensionality problems. Also, in the hidden layer of RBFNNs, FCM algorithm is used to produce some clusters based on the similarity of given dataset. The proposed model depends on some parameters such as the number of input variables in PNNs, the number of clusters and fuzzification coefficient in FCM and polynomial type in RBFNNs. A multiobjective particle swarm optimization using crowding distance (MoPSO-CD) is exploited in order to carry out both structural and parametric optimization of the proposed networks. MoPSO is introduced for not only the performance of model but also complexity and interpretability. The usefulness of the proposed model as a classifier is evaluated with the aid of some benchmark datasets such as iris and liver.

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • 제35권4호
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.

An Efficient Rectification Algorithm for Spaceborne SAR Imagery Using Polynomial Model

  • Kim, Man-Jo
    • 대한원격탐사학회지
    • /
    • 제19권5호
    • /
    • pp.363-370
    • /
    • 2003
  • This paper describes a rectification procedure that relies on a polynomial model derived from the imaging geometry without loss of accuracy. By using polynomial model, one can effectively eliminate the iterative process to find an image pixel corresponding to each output grid point. With the imaging geometry and ephemeris data, a geo-location polynomial can be constructed from grid points that are produced by solving three equations simultaneously. And, in order to correct the local distortions induced by the geometry and terrain height, a distortion model has been incorporated in the procedure, which is a function of incidence angle and height at each pixel position. With this function, it is straightforward to calculate the pixel displacement due to distortions and then pixels are assigned to the output grid by re-sampling the displaced pixels. Most of the necessary information for the construction of polynomial model is available in the leader file and some can be derived from others. For validation, sample images of ERS-l PRI and Radarsat-l SGF have been processed by the proposed method and evaluated against ground truth acquired from 1:25,000 topography maps.