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Selection of Data—adaptive Polynomial Order in
Local Polynomial Nonparametric Regression
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Abstract

A data-adaptive order selection procedure is proposed for local polynomial
nonparametric regression. For each given polynomial order, bias and variance are
estimated and the adaptive polynomial order that has the smallest estimated mean
squared error is selected locally at each location point. To estimate mean squared
error, empirical bias estimate of Ruppert (1995) and local polynomial variance estimate
of Ruppert, Wand, Holst and Héssjer (1995) are used. Since the proposed method does
not require fitting polynomial model of order higher than the model order, it is
simpler than the order selection method proposed by Fan and Gijbels (1995b).

1. Introduction

Let X and Y be random variables which can be modelled by

Y=m(X) +e, Ee=0 and Var (&) =v(X),
where m(x) and v(x) are smooth functions specifying the conditional mean and variance
functions of Y given X=x. It is of interest to estimate regression function
m(x)=E(Y|X=2x) based on a random sample (X;,Y}),..,(X,,Y,) from(X,Y).

Monographs such as Hiardle (1990), Wand and Jones (1995) and Fan and Gijbels (1996)
provide a good deal of various nonparametric curve fitting procedures. Among them, local
polynomial regression method is considered in this paper.

For u in a neighborhood of a location point x, assume that m(z) can be modelled locally

by a polynomial of order 2,
m()~m(x) +m (x)u—2x) +- +m P(x)u—x)/p!. (1.1)

Then the local polynomial regression method estimates regression function and its derivatives
by minimizing
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(1.2)

with respect to By, ---,8,, where h is a bandwidth and K is a symmetric kernel function.
From (1.1), it is clear that 7! B, estimates m (%), for j=0,.,p. If we let W;(x) be the
nXn diagonal matrix whose 7th diagonal element is K( (X;—x)/ %), and X ,(x) be the

nx (p+1) design matrix whose (&, /)* element is (X,—%) "1 the weighted least squares
problem (1.2) can be rewritten in matrix form as minimizing

(y— X,(x)B) " Wilx) (y— X,(x)B)
with respect to 8, where y=(Yi, ., Y,)7 and B=(8,, ...,,B,,)T. Then the ordinary least
squares theory leads to the solution /B=( X,(x)T W(x) X,(x)) T X,(x)T Wy(x)y and
the local polynomial estimator of m(x) is #(x;h,p)= By. And the bias and variance of

m(x;h, p) are given by

Bias (m(x;h,p))
= o ( X,(0)T W(x) X,(x)) " X,(x) Wy(x)( m— X,(x)8),

Var (m(x;h,5) |
= e ( X,(0)T W(x) X,(x)) " ( X,(x)TE X,(x))
(X007 Wi(x) X,(x)) ey,

where  m= {m(Xy), ... m(X)7T, e;=(1,0,..,007 and X= diag {K*((X;—2)/h) (X))}
(see e. g. Wand and Jones (1995), Fan and Gijbels (1996)). Thus the mean squared error of
estimator 7 (x;h, p) is

MSE ( m(x;k, p))= Bias?( m(x;h,p))+ Var( m(x;h, p)).

Several estimates of bias and variance terms have been proposed by authors. Researchers
have investigated bandwidth selection problem through the estimation of mean squared error
(Ruppert, Sheather, and Wand (1995)), but selection of polynomial order has not been studied
widely. Recently Fan and Gijbels (1995a) discussed the issue of local variable bandwidth and
Fan and Gijbels (1995b) considered selection of adaptive polynomial order for local polynomial
regression. For fixed polynomial order p, bandwidth % can be selected locally to capture
varying curvatures of the unknown regression curve. On the contrary for fixed bandwidth,
selection of polynomial order locally (different order polynomial at different location point x)
is another way to capture curvature of regression curve. In this paper, an adaptive polynomial
order selection procedure is considered. The proposed procedure is different from procedure
suggested by Fan and Gijbels (1995a, 1995b) in the estimations of bias and variance terms.
Empirical bias estimation procedure of Ruppert (1995) is used to estimate bias. Ruppert used
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this procedure to select local bandwidth and called this procedure EBBS (empirical-bias
bandwidth selector). A distinct feature of EBBS is that it uses empirical estimates rather than
asymptotic expression of bias. In addition, it is different from procedures of Fan and Gijbels
in that it does not require fitting of local polynomial of order higher than the model order.
Besides bias estimate, estimate proposed by Ruppert, Wand, Holst and Hossjer (1995) is used
to estimate variance term. On the contrary, variance estimate of Fan and Gijbels is obtained
by fitting extra higher order polynomial fitting which can result collinearity problem.
Combining these estimates, we can estimate mean squared error. For each polynomial order,
mean squared errors are estimated and the order that yields the smallest estimated mean
squared error is selected as the adaptive polynomial order at the location point and at the
bandwidth where we are to estimate regression function.

2. Polynomial Order Selection

Ruppert (1995) proposed an estimator of bias term to select local bandwidth for fixed order
local polynomial regression. A similar bandwidth selection algorithm has been proposed for
Priestly-Chao kernel estimator by Cha and Lee (1994). It is well known that standard

asymptotics lead to the asymptotic bias of m (x;h,p) which can be written as
Bias ( m(x;h,0) = C,h®” ' +C,h? 2 +0(R**3),

where C 1y, Cpsye are constant factors which depend on m, K and the design density (see
e. g. Wand and Jones (1995), Fan and Gijbels (1996)). From this approximation, the bias is
estimated empirically using estimates at several bandwidths to fit a model for E( m(x;h, p))
as a function of k. At a fixed point x and at a fixed bandwidth h; where we are to

estimate E( m(x;hky, p)), choose bandwidths hq?, -, b’ (J=1) in the neighborhood of A
and calculate m(x, ho(’)..b), (=1, .-.,J) and then for some #=1, fit the curve

m(x, b, p)=Co+Cpiih? .. +C e h** @.1)
to the {(h(](j ) m(x, ho(j),ﬁ). j=1,..,J} by the ordinary least squares. Then the bias of
estimator m2(x;hg, p) is estimated by

Conhd™ 4.+ Couhd™". 2.2)

Assuming local homoscedasticity »(X;)=v(x) for X; in a neighborhood of x, variance of

r/n\(x;h, p) can be approximated by (see e. g. Wand and Jones (1995), Fan and Gijbels
(1996))
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Var (ﬁ(x;g,p))
~ e (X, ()T Wy(x) X,(x)) 1 X,(x)" W,(x)? X,(x)) (2.3)
(X, ()T Wi(x) X, (x)) o(x) e

We can estimate v(x) using the normalized weighted residual sum of squares of Fan and

Gijbels (1995a) or we can utilize another variance function estimator that smooth squared
residuals by local polynomial fitting of different order and bandwidth (Ruppert, Wand, Holst
and Héssjer (1995)).

Let p; and A; be the polynomial order and bandwidth at the first stage (smoothing ¥) and

let r=(r) .7s) =y — Y. where y= ( m(X,, hy, 1), e (X, hl,pl))T, be the residual
vector from the fitting. And at the second stage, squared residuals are smoothed similarly
with polynomial of order p, and bandwidth 4,. If S) is an zX#n smoother matrix at the

first step ( y= S, ¥,), the variance estimate proposed by Ruppert et al. is

eT(X (0 "W, (10X () "X, (0) W, (2) 7

() = 24
200 = T o X, (1) W)X () X ) Wi ()4 @
where ¥*=(#, )T and A= diag (S,ST—2S)).
Combining (2.2)-(2.4), MSE ( m(x; hy, p)) can be estimated by
MSE ( m(x;hy, 1))
= ( Coprhd™ +et Corhd™)’
T T -1 T 2 2.5)
+ e ( X,(x)T W, (x) X,(x)) " ( X,(x)" W,(x) X,(x))

(X, ()T Wi (2) X,(x)) () e

By repeating above calculations for each p<{0,1, ..., D uax) at fixed x and Ay, we can

choose order of polynomial which has the smallest MSE ( m(x; by, D).

3. An Example

Since the justifications for the adaptive order selection and extensive examples can be found
in Fan and Gijbels (1995b), we present only one simulated example to illustrate the
performance of our order selection procedure. The simulated example is

Y,': Siﬂ3(27fX,'3)+€,‘,

where X~1X0,1), e~MJ0,(0.1)%). We take a sample of size n=256 and we use
Epanechnikov kernel at every smoothing steps and we estimated regression curve at 100
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equally spaced location points.
At the first step, bias is estimated empirically at each location points. Regression curves in
(2.1) are computed at 10 bandwidths ( /=10) in the neighborhood of A; with ¢=3, and bias

is estimated by (2.2). And at the second step, variance function is estimated by (2.4). For
computational simplicity, local linear estimation with equal bandwidths are used in two steps
of variance function estimation ( p; =p,=1, A, = hy=0.1). And finally, adopting algorithm of

Fan and Gijbels (1995b), mean squared error at each location point is obtained by the
weighted average of mean squared errors at points in the neighborhood of that location point.
Figure 1 (a)-(f) shows estimated curves by adaptive order selection. For comparison, curves

by local linear fitting are also given. We used several bandwidths #£¢=0.07, 0.1, 0.12, 0.15, 0.18

and 0.2. As we can see in Figure 1, adaptive order selection outperform local linear fitting
especially near the peak and valley for various bandwidths. And contrary to the changes in
local linear fitting for the varying bandwidths, changes of adaptive order fitting is robust to
the bandwidth. This result coincides with results of simulations in Fan and Gijbels (1995b).
Although adaptive order selection procedure is robust to the bandwidths, bandwidth selection
strategy more refined than the rule-of-thumb method of Fan and Gijbels (1995b) deserves
further study.

(a) Bandwidth=0.07 (b) Bandwidth=0.10
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Figure 1: The comparison of local polynomial regression by adaptive order selection and local
linear regression
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(c) Bandwidth=0.12
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Figure 1(continued)
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