• Title/Summary/Keyword: Polymorphism Information Content

Search Result 129, Processing Time 0.024 seconds

Development of EST-SSR markers for genetic diversity analysis in little millet (Panicum sumatrense) genetic resources

  • Lee, Myung-Chul;Choi, Yu-Mi;Lee, Sukyeung;Yoon, Hyemyeong;Oh, Sejong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.74-74
    • /
    • 2018
  • Little millet (Panicum sumatrense) is well known for its salt and drought stress tolerance and high nutritional value, but very limited knowledge of genetic variation and genomic information is available. This study was to develop highly polymorphic EST-SSR markers based on cross-species transferability of derived SSRs from switchgrass EST databases and characterize newly developed EST - SSRs to better understand the genetic diversity of collected 37 germplasm accessions of little millet. A total of 779 primer pairs were designed from the 22,961 EST sequences of switchgrass (Pancium virgatum), of which 48 EST - SSR markers were developed based on the trials of transferability of these primers in little millet. The EST - SSR amplicons showed reproducible single band polymorphism and produced a total of 160 alleles with an average of 3.3 alleles per locus in 37 accessions of little millet. T he average values of expected and observed heterozygosities were 0.266 and 0.123, respectively. T he polymorphic information content (PIC) values were observed in range of 0.026 to 0.549 with an average of 0.240. The genetic relatedness among the little millet accessions was evaluated by neighbor-joining dendrogram, which grouped all accessions into two distinct groups. The validation thus demonstrated the utility of the switchgrass EST - SSR markers in assessing genomic relationships in little millet. T he findings from this study could be useful for designing strategies for the identification of diverse germplasm for conservation and future molecular breeding programs for little millet.

  • PDF

Genotyping of the Wild Mushroom Lentinula edodes from Mt. Jungwang and Mt. Gariwang in Korea

  • Jeong, Yeun Sug;Jang, Yeongseon;Ryoo, Rhim;Kim, Ki-Hwan;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.289-295
    • /
    • 2016
  • Lentinula edodes is an edible wild mushroom that can be found in mountainous regions of the Korean peninsula. Wild oak mushrooms were collected from Quercus mongolica at an elevation of more than 1,000 m on Mt. Jungwang and Mt. Gariwang in Gangwon province. We examined 10 oak mushroom strains to evaluate the genetic similarity among strains. Genetic similarity was determined based on the analysis of microsatellite markers (Led A2, Led A8, Led B2, Led B6, and Led D6) registered in the National Center for Biotechnology Information. We also performed dual culture tests on potato dextrose agar for 2 months at $25^{\circ}C$. The observed heterozygosity across all microsatellites ranged from 0.00 and 0.60 among 5 microsatellite markers, and the polymorphism information content values of Led A2, Led A8, Led B2, Led B6, and Led D6 were 0.0000, 0.8144, 0.6194, 0.4892, and 0.5702, respectively (mean value = 0.4987). Confrontation lines between strains were formed for almost all combinations. In conclusion, the oak mushroom populations of Mt. Jungwang and Mt. Gariwang have mixed gene pools. However, further studies are needed to identify genetic similarities and variations among these populations.

EST-SSR Based Genetic Diversity and Population Structure among Korean Landraces of Foxtail Millet (Setaria italica L.)

  • Ali, Asjad;Choi, Yu-Mi;Do, Yoon-Hyun;Lee, Sukyeung;Oh, Sejong;Park, Hong-Jae;Cho, Yang-Hee;Lee, Myung Chul
    • Korean Journal of Plant Resources
    • /
    • v.29 no.3
    • /
    • pp.322-330
    • /
    • 2016
  • Understanding the genetic variation among landrace collections is important for crop improvement and utilization of valuable genetic resources. The present study was carried out to analyse the genetic diversity and associated population structure of 621 foxtail millet accessions of Korean landraces using 22 EST-SSR markers. A total of 121 alleles were detected from all accessions with an average of 5.5 alleles per microsatellite locus. The average values of gene diversity, polymorphism information content, and expected heterozygosity were 0.518, 0.594, and 0.034, respectively. Following the unweighted neighbor-joining method with arithmetic mean based clustering using binary data of polymorphic markers, the genotypes were grouped into 3 clusters, and population structure analysis also separated into 3 populations. Principal coordinate analysis (PCoA) explained a variation of 13.88% and 10.99% by first and second coordinates, respectively. However, in PCoA analysis, clear population-level clusters could not be found. This pattern of distribution might be the result of gene flow via germplasm exchanges in nearby regions. The results indicate that these Korean landraces of foxtail millet exhibit a moderate level of diversity. This study demonstrated that molecular marker strategies could contribute to a better understanding of the genetic structure in foxtail millet germplasm, and provides potentially useful information for developing conservation and breeding strategies.

Development of EST-SSRs and Assessment of Genetic Diversity in Little Millet (Panicum sumatrense) Germplasm

  • Ali, Asjad;Choi, Yu-Mi;Hyun, Do-Yoon;Lee, Sukyeung;Kim, Jin-Hee;Oh, Sejong;Lee, Myung Chul
    • Korean Journal of Plant Resources
    • /
    • v.30 no.3
    • /
    • pp.287-297
    • /
    • 2017
  • Little millet (Panicum sumatrense) is well known for its salt and drought stress tolerance and high nutritional value, but very limited knowledge of genetic variation and genomic information is available. In this study, a total of 779 primer pairs were designed from the 22,961 EST sequences of switchgrass (Pancium virgatum), of which 48 EST-SSR markers were developed based on the trials of transferability of these primers in little millet. The EST-SSR amplicons showed reproducible single band polymorphism and produced a total of 160 alleles with an average of 3.3 alleles per locus in 37 accessions of little millet. The average values of expected and observed heterozygosities were 0.266 and 0.123, respectively. The polymorphic information content (PIC) values were observed in range of 0.026 to 0.549 with an average of 0.240. The genetic relatedness among the little millet accessions was evaluated by neighbor-joining dendrogram, which grouped all accessions into two distinct groups. The validation thus demonstrated the utility of the switchgrass EST-SSR markers in assessing genomic relationships in little millet. The findings from this study could be useful for designing strategies for the identification of diverse germplasm for conservation and future molecular breeding programs for little millet.

Genomic Polymorphism Analysis using Microsatellite Markers in Gyeongju Donggyeong Dogs

  • Kim, Seung-Chang;Kim, Lee-Kyung;Choi, Seog-Kyu;Park, Chang-Min;Park, Sun-Ae;Cho, Yong-Min;Lim, Dajeong;Chai, Han-Ha;Lee, Seung-Hwan;Lee, Ji-Woong;Sun, Sang-Soo;Choi, Bong-Hwan
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.243-248
    • /
    • 2012
  • This study was conducted to find a useful marker for gene polymorphism analysis using Microsatellite marker (MS marker) in Gyeongju Donggyeong dog. Twenty three MS marker analyzed the genetic features of DNA using 100 Gyeongju Donggyeong dogs in Gyeongju area. It was performed multiplex PCR with 3 set primer divided 9, 10 and 4 by analysis of conditions among MS markers. The results were calculated heterozygosity, polymorphic information content (PIC), allele frequency and number of allele at each locus using Microsatellite Toolkit software and Cervus 3.0 program. Total 148 alleles were genotyped to determine and average 6.43 alleles was detected. FH3381 had the highest of 15 alleles and FH2834 had the lowest of 2 alleles. Expected heterozygosity had a wide range from 0.282 to 0.876 and had average value of 0.6496. Also, Observed heterozygosity had a more wide range from 0.200 to 0.950 and had average value of 0.6404. PIC had range from 0.262 to 0.859 and average PIC was calculated 0.606. Especially, FH2998 represented the highest rate of observed heterozygosity of 0.950 and FH3381 represented the highest rate of expected heterozygosity of 0.876 and PIC of 0.859. The use of these markers was considered to be useful to study genetic traits of Gyeongju Donggyeong dog.

Analysis of Genetic Relationship of Apple Varieties using Microsatellite Markers (Microsatellite 마커를 이용한 사과 품종 간 유전적 유연관계 분석)

  • Hong, Jee-Hwa;Kwon, Yong-Sham;Choi, Keun-Jin
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.721-727
    • /
    • 2013
  • The objective of this study was to evaluate the suitability of microsatellite markers for variety identification in 42 apple varieties. For microsatellite analysis, 305 primer pairs were screened in 8 varieties and twenty six primer pairs showed polymorphism with clear band pattern and repetitive reproducibility. A total of 165 polymorphic amplified fragments were obtained in 42 varieties using 26 markers. Two to twelve alleles were detected for each locus with an average of 6.4 alleles per locus. A value of polymorphism information content (PIC) ranged from 0.461 to 0.849 with an average of 0.665. A total of 165 marker loci were used to calculate Jaccard's distance coefficients using unweighted pair-group method with arithmetical average (UPGMA) cluster analysis. Genetic distance of cluster ranged from 0.27 to 1.00. Analysis of genetic relationship revealed that these 26 microsatellite marker sets discriminated a total of 41 varieties except for 1 variety among 42 varieties. These markers will be utilized as molecular data in variety identification of apple.

Survey of genetic structure of geese using novel microsatellite markers

  • Lai, Fang-Yu;Tu, Po-An;Ding, Shih-Torng;Lin, Min-Jung;Chang, Shen-Chang;Lin, En-Chung;Lo, Ling-Ling;Wang, Pei-Hwa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.167-179
    • /
    • 2018
  • Objective: The aim of this study was to create a set of microsatellite markers with high polymorphism for the genetic monitoring and genetic structure analysis of local goose populations. Methods: Novel microsatellite markers were isolated from the genomic DNA of white Roman geese using short tandem repeated probes. The DNA segments, including short tandem repeats, were tested for their variability among four populations of geese from the Changhua Animal Propagation Station (CAPS). The selected microsatellite markers could then be used to monitor genetic variability and study the genetic structures of geese from local geese farms. Results: 14 novel microsatellite loci were isolated. In addition to seven known loci, two multiplex sets were constructed for the detection of genetic variations in geese populations. The average of allele number, the effective number of alleles, the observed heterozygosity, the expected heterozygosity, and the polymorphism information content were 11.09, 5.145, 0.499, 0.745, and 0.705, respectively. The results of analysis of molecular variance and principal component analysis indicated a contracting white Roman cluster and a spreading Chinese cluster. In white Roman populations, the CAPS populations were depleted to roughly two clusters when K was set equal to 6 in the Bayesian cluster analysis. The founders of private farm populations had a similar genetic structure. Among the Chinese geese populations, the CAPS populations and private populations represented different clads of the phylogenetic tree and individuals from the private populations had uneven genetic characteristics according to various analyses. Conclusion: Based on this study's analyses, we suggest that the CAPS should institute a proper breeding strategy for white Roman geese to avoid further clustering. In addition, for preservation and stable quality, the Chinese geese in the CAPS and the aforementioned proper breeding scheme should be introduced to geese breeders.

Polymorphisms in the Perilipin Gene May Affect Carcass Traits of Chinese Meat-type Chickens

  • Zhang, Lu;Zhu, Qing;Liu, Yiping;Gilbert, Elizabeth R.;Li, Diyan;Yin, Huadong;Wang, Yan;Yang, Zhiqin;Wang, Zhen;Yuan, Yuncong;Zhao, Xiaoling
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.763-770
    • /
    • 2015
  • Improved meat quality and greater muscle yield are highly sought after in high-quality chicken breeding programs. Past studies indicated that polymorphisms of the Perilipin gene (PLIN1) are highly associated with adiposity in mammals and are potential molecular markers for improving meat quality and carcass traits in chickens. In the present study, we screened single nucleotide polymorphisms (SNPs) in all exons of the PLIN1 gene with a direct sequencing method in six populations with different genetic backgrounds (total 240 individuals). We evaluated the association between the polymorphisms and carcass and meat quality traits. We identified three SNPs, located on the 5' flanking region and exon 1 of PLIN1 on chromosome 10 (rs315831750, rs313726543, and rs80724063, respectively). Eight main haplotypes were constructed based on these SNPs. We calculated the allelic and genotypic frequencies, and genetic diversity parameters of the three SNPs. The polymorphism information content (PIC) ranged from 0.2768 to 0.3750, which reflected an intermediate genetic diversity for all chickens. The CC, CT, and TT genotypes influenced the percentage of breast muscle (PBM), percentage of leg muscle (PLM) and percentage of abdominal fat at rs315831750 (p<0.05). Diplotypes (haplotype pairs) affected the percentage of eviscerated weight (PEW) and PBM (p<0.05). Compared with chickens carrying other diplotypes, H3H7 had the greatest PEW and H2H2 had the greatest PBM, and those with diplotype H7H7 had the smallest PEW and PBM. We conclude that PLIN1 gene polymorphisms may affect broiler carcass and breast muscle yields, and diplotypes H3H7 and H2H2 could be positive molecular markers to enhance PEW and PBM in chickens.

Single Nucleotide Polymorphism (SNP) Discovery and Kompetitive Allele-Specific PCR (KASP) Marker Development with Korean Japonica Rice Varieties

  • Cheon, Kyeong-Seong;Baek, Jeongho;Cho, Young-il;Jeong, Young-Min;Lee, Youn-Young;Oh, Jun;Won, Yong Jae;Kang, Do-Yu;Oh, Hyoja;Kim, Song Lim;Choi, Inchan;Yoon, In Sun;Kim, Kyung-Hwan;Han, Jung-Heon;Ji, Hyeonso
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.391-403
    • /
    • 2018
  • Genome resequencing by next-generation sequencing technology can reveal numerous single nucleotide polymorphisms (SNPs) within a closely-related cultivar group, which would enable the development of sufficient SNP markers for mapping and the identification of useful genes present in the cultivar group. We analyzed genome sequence data from 13 Korean japonica rice varieties and discovered 740,566 SNPs. The SNPs were distributed at 100-kbp intervals throughout the rice genome, although the SNP density was uneven among the chromosomes. Of the 740,566 SNPs, 1,014 SNP sites were selected on the basis of polymorphism information content (PIC) value higher than 0.4 per 200-kbp interval, and 506 of these SNPs were converted to Kompetitive Allele-Specific PCR (KASP) markers. The 506 KASP markers were tested for genotyping with the 13 sequenced Korean japonica rice varieties, and polymorphisms were detected in 400 KASP markers (79.1%) which would be suitable for genetic analysis and molecular breeding. Additionally, a genetic map comprising 205 KASP markers was successfully constructed with 188 $F_2$ progenies derived from a cross between the varieties, Junam and Nampyeong. In a phylogenetic analysis with 81 KASP markers, 13 Korean japonica varieties showed close genetic relationships and were divided into three groups. More KASP markers are being developed and these markers will be utilized in gene mapping, quantitative trait locus (QTL) analysis, marker-assisted selection and other strategies relevant to crop improvement.

Analysis of genetic diversity and population structure of rice cultivars from Africa, Asia, Europe, South America, and Oceania using SSR markers

  • Cheng, Yi;Cho, Young-Il;Chung, Jong-Wook;Ma, Kyung-Ho;Park, Yong-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.441-451
    • /
    • 2009
  • In this study, 29 simple sequence repeat (SSR) markers were used to analyze the genetic diversity and population structure of 125 rice accessions from 40 different origins in Africa, Asia, Europe, South America, and Oceania. A total of 333 alleles were detected, with an average of 11.5 per locus. The mean values of major allele frequency, expected heterozygosity, and polymorphism information content (PIC) for each SSR locus were 0.39, 0.73, and 0.70, respectively. The highest mean PIC was 0.71 for Asia, followed by 0.66 for Africa, 0.59 for South America, 0.53 for Europe, and 0.47 for Oceania. Model-based structure analysis revealed the presence of five subpopulations, which was basically consistent with clustering based on genetic distance. Some accessions were clearly assigned to a single population in which >70% of their inferred ancestry was derived from one of the model-based populations. In addition, 12 accessions (9.6%) were categorized as having admixed ancestry. The results could be used to understanding the genetic structure of rice cultivars from these regions and to support effective breeding programs to broaden the genetic basis of rice varieties.