Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.6.721

Analysis of Genetic Relationship of Apple Varieties using Microsatellite Markers  

Hong, Jee-Hwa (Variety Testing Division, Korea Seed and Variety Service, Ministry for Food, Agriculture, Forestry and Fisheries)
Kwon, Yong-Sham (Variety Testing Division, Korea Seed and Variety Service, Ministry for Food, Agriculture, Forestry and Fisheries)
Choi, Keun-Jin (Variety Testing Division, Korea Seed and Variety Service, Ministry for Food, Agriculture, Forestry and Fisheries)
Publication Information
Journal of Life Science / v.23, no.6, 2013 , pp. 721-727 More about this Journal
Abstract
The objective of this study was to evaluate the suitability of microsatellite markers for variety identification in 42 apple varieties. For microsatellite analysis, 305 primer pairs were screened in 8 varieties and twenty six primer pairs showed polymorphism with clear band pattern and repetitive reproducibility. A total of 165 polymorphic amplified fragments were obtained in 42 varieties using 26 markers. Two to twelve alleles were detected for each locus with an average of 6.4 alleles per locus. A value of polymorphism information content (PIC) ranged from 0.461 to 0.849 with an average of 0.665. A total of 165 marker loci were used to calculate Jaccard's distance coefficients using unweighted pair-group method with arithmetical average (UPGMA) cluster analysis. Genetic distance of cluster ranged from 0.27 to 1.00. Analysis of genetic relationship revealed that these 26 microsatellite marker sets discriminated a total of 41 varieties except for 1 variety among 42 varieties. These markers will be utilized as molecular data in variety identification of apple.
Keywords
Apple; genetic relationship; genotype; microsatellite marker; variety identification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anderson, J. A., Churchill, G. A., Autrigue, J. E. and Tanksley, S. D. 1993. Optimizing parental selection for genetic linkage maps. Genome 36, 181-186.   DOI   ScienceOn
2 Celton, J. M., Tustin, D. S., Chagné, D. and Gardiner, S. E. 2009. Construction of a dense genetic linkage map for apple rootstocks using SSRs developed from Malus ESTs and Pyrus genomic sequences. Tree Genet Genomes 5, 93-107.   DOI
3 Cho, K. H., Heo, S., Kim, J. H., Shin, I. S., Kim, S. H., Kim, D. H., Han, S. E. and Kim, H. R. 2010. Analysis of genetic diversity of apple cultivars using RAPD and SSR markers. J Crop Sci Biotechnol 42, 525-533.
4 Farrokhi, J., Darvishzadeh, R., Naseri, L., Mohseni Azar, M. and Hatami Maleki, H. 2011. Evaluation of genetic diversity among Iranian apple (Malus x domestica Borkh.) cultivars and landraces using simple sequence repeat markers. Aust J Crop Sci 5, 815-821.
5 Gasic, K., Han, Y., Kertbundit, S., Shulaev, V., Iezzoni, A. F., Stover, E. W., Bell, R. L., Wisniewski, M. E. and Korban, S. S. 2009. Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23, 397-411.   DOI
6 Gianfranceschi, L., Seglias, N., Tarchini, R., Komjanc, M. and Gessler, C. 1998. Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96, 1069-1076.   DOI   ScienceOn
7 Kalia, R. K., Rai, M. K., Kalia, S., Singh, R. and Dhawan, A. K. 2011. Microsatellite markers: an overview of the recent progress in plants. Euphytica 177, 309-334.   DOI
8 Kitahara, K., Matsumoto, S., Yamamoto, T., Soejima, J., Kimura, H., Komatsu, H. and Abe, K. 2005. Molecular characterization of apple cultivars in Japan by S-RNase analysis and SSR markers. J Am Soc Hortic Sci 130, 885-892.
9 Liebhard, R., Gianfranceschi, L., Koller, B., Ryder, C. D., Tarchini, R., Van de Weg, W. E. and Gessler, C. 2002. Development and characterization of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol Breed 10, 217-241.   DOI   ScienceOn
10 Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res J 27, 209-220.
11 Rohlf, F. J. 2000. NTSYSpc. Numerical Taxonomy and Multivariate analysis system-version 2.10b. Applied Biostatistics Inc., New York.
12 Silfverberg-Dilworth, E., Matasci, C. L., Van de Weg, W. E., Van Kaauwen, M. P. W., Walser, M., Kodde, L. P., Soglio, V., Gianfranceschi, L., Durel, C. E., Costa, F., Yamamoto, T., Koller, B., Gessler, C. and Patocchi, A. 2006. Microsatellite markers spanning the apple (Malus x domestica Borkh.) genome. Tree Genet Genomes 2, 202-224.   DOI   ScienceOn
13 Sneath, P. H. A. and Sokal, R. R. 1973. Numerical taxonomy: The principles and practice of numerical classification. W. H. Freeman, San Francisco.
14 UPOV-BMT. 2008. BMT/11/16 The assessment of essential derivation in grapevine, Madrid.
15 UPOV-INF. 2011. INF/18/1 Possible use of molecular markers in the examination of distinctness, uniformity and stability (DUS).
16 Van Treuren, R., Kemp, H., Ernsting, G., Jongejans, B., Houtman, H. and Visser, L. 2010. Microsatellite genotyping of apple (Malus x domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genet Resour Crop Evol 57, 853-865.   DOI   ScienceOn
17 Varshney, R. K., Graner, A. and Sorrells, M. E. 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23, 48-55.   DOI   ScienceOn
18 Yamamoto, T., Mochida, K. and Hayashi, T. 2003. Shanhai Suimitsuto, one of the origins of Japanese peach cultivars. J Jpn Soc Hortic Sci 72, 116-121.   DOI