• 제목/요약/키워드: Polymeric nanoparticles

검색결과 88건 처리시간 0.028초

Controlled Release of Epidermal Growth Factor (EGF) from EGF-loaded Polymeric Nanoparticles Composed of Polystyrene as Core and Poly(methacrylic acid) as Corona in vitro

  • Park, In-Kyu;Seo, Seog-Jin;Akashi, Mitsuru;Akaike, Toshihiro;Cho, Chong-Su
    • Archives of Pharmacal Research
    • /
    • 제26권8호
    • /
    • pp.649-652
    • /
    • 2003
  • Polymeric nanoparticles composed of polystyrene (PS) as core and poly(methacrylic acid) (PMA) as corona were prepared by the dispersion copolymerization. The potential of the nanoparticles as carriers for recombinant human epidermal growth factor (EGF) was investigated. The nanoparticles showed monodispersity and good water-dispersibility. The loading content of EGF to the nanoparticles was very high due to electrostatic interaction between EGF and nanoparticles. EGF was released as a pseudo-zero order pattern after initial burst effect. The nanoparticles were sufficient for A431 cells proliferation.

Preparation of Polymeric Self-Assembly and Its Application to Biomaterials

  • Cho, Chong-Su;Park, In-Kyu;Nah, Jae-Woon;Toshihiro Akaike
    • Macromolecular Research
    • /
    • 제11권1호
    • /
    • pp.2-8
    • /
    • 2003
  • The self-assembly of polymers can lead to supramolecular systems and is related to the their functions of material and life sciences. In this article, self-assembly of Langmuir-Blodgett (LB) films, polymer micelles, and polymeric nanoparticles, and their biomedical applications are described. LB surfaces with a well-ordered and layered structure adhered more cells including platelet, hepatocyte, and fibroblast than the cast surfaces with microphase-separated domains. Extensive morphologic changes were observed in LB surface-adhered cells compared to the cast films. Amphiphilic block copolymers, consisting of poly(${\gamma}$-benzyl L-glutamate) (PBLG) as the hydrophobic part and poly(ethylene oxide) (PEO) [or poly(N-isopropylacrylamide) (PNIPAAm)] as the hydrophilic one, can self-assemble in water to form nanoparticles presumed to be composed of the hydrophilic shell and hydrophobic core. The release characteristics of hydrophobic drugs from these polymeric nanoparticles were dependent on the drug loading contents and chain length of the hydrophobic part of the copolymers. Achiral hydrophobic merocyanine dyes (MDs) were self-assembled in copolymeric nanoparticles, which provided a chiral microenvironment as red-shifted aggregates, and the circular dichroism (CD) of MD was induced in the self-assembled copolymeric nanoparticles.

Surface Modification of Colloidal Silica Nanoparticles: Controlling the size and Grafting Process

  • He, Wentao;Wu, Danhua;Li, Juan;Zhang, Kai;Xiang, Yushu;Long, Lijuan;Qin, Shuhao;Yu, Jie;Zhang, Qin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2747-2752
    • /
    • 2013
  • Surface modification of colloidal silica nanoparticles without disrupting the electric double layer of nanoparticles is a major challenge. In the work, silane was employed to modify colloidal silica nanoparticles without inducing bridge flocculation obviously. The effect of pH value of the silica sol, the amount of silane in feed, and reaction temperature on the graft amount and the final size of modified particles was investigated. The increased weight loss by TG and the appearance of $T_2$ and $T_3$ except for $Q_2$ and $Q_3$ signals by CP/MAS $^{29}Si$ NMR of the modified samples verified the successful grafting of silane. The graft amount reached 0.57 mmol/g, which was slightly lower than theory value, and the particle size remained nearly the same as unmodified particles for acidic silica sol at the optimum condition. For alkaline silica sol after modification, aggregates composed of several nanoparticles connected together with silane moleculars as the bridge appeared.

Amphotericin B Aggregation Inhibition with Novel Nanoparticles Prepared with Poly(${\varepsilon}$-caprolactone)/Poly(N,N-dimethylamino-2-ethyl methacrylate) Diblock Copolymer

  • Shim, Yong-Ho;Kim, You-Chan;Lee, Hong-Joo;Bougard, Francois;Dubois, Philippe;Choi, Ki-Choon;Chung, Chung-Wook;Kang, Dae-Hwan;Jeong, Young-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권1호
    • /
    • pp.28-36
    • /
    • 2011
  • Diblock copolymers composed of poly(${\varepsilon}$-caprolactone) (PCL) and poly(N,N-dimethylamino-2-ethyl methacrylate) (PDMAEMA), or methoxy polyethylene glycol(PEG), were synthesized via a combination of ring-opening polymerization and atom-transfer radical polymerization in order to prepare polymeric nanoparticles as an antifungal drug carrier. Amphotericin B (AmB), a natural antibiotic, was incorporated into the polymeric nanoparticles. The physical properties of AmB-incorporated polymeric nanoparticles with PCL-b-PDMAEMA and PCL-b-PEG were studied in relation to morphology and particle size. In the aggregation state study, AmB-incorporated PCL-b- PDMAEMA nanoparticles exhibited a monomeric state pattern of free AmB, whereas AmB-incorporated PCL-b- PEG nanoparticles displayed an aggregated pattern. In in vitro hemolysis tests with human red blood cells, AmBincorporated PCL-b-PDMAEMA nanoparticles were seen to be 10 times less cytotoxic than free AmB (5 ${\mu}g$/ml). In addition, an improved antifungal activity of AmBincorporated polymeric nanoparticles was observed through antifungal activity tests using Candida albicans, whereas polymeric nanoparticles themselves were seen not to affect activity. Finally, in vitro AmB release studies were conducted, proving the potential of AmB-incorporated PCL-b-PDMAEMA nanoparticles as a new formulation candidate for AmB.

Synthesis and characterization of ABA types tri-block copolymers derived from p-dioxanone, ${\varepsilon}-caprolactone$ and poly(ethylene glycol)

  • Remant Bahadur K.C.;Bhattarai Shanta Raj;Aryal Santosh;Khil, Myung-Seob;Kim, Hak-Yong;Lee, Douk-Rae
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.255-255
    • /
    • 2006
  • Polymeric nanoparticles are recognized as promising drug carriers [1]. Here, novel tri-block copolymers based on poly PPDO, PCL and PEG were synthesized and employed for the formulation of reproducible polymeric nanoparticles [2]. To estimate the feasibility of the polymer to form polymeric nanoparticles, nanoparticles were prepared by co-solvent evaporation technique. Polymerization and structural features of the polymer were analyzed by different physico-chemical techniques. Existence of hydrophobic domains as a core of nanoparticles was characterized by $^{1}H-NMR$ spectroscopy, and further confirmed by fluorescence technique using pyrene as probe.

  • PDF

폐 전이 암에 대한 Lipid Coated Polymeric Nanoparticles에 관한 연구 (Study of Lipid Coated Polymeric Nanoparticles for Lung Metastasis)

  • 박준영;박상효;조예림;정민지;김인우;강원준;기재홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제39권4호
    • /
    • pp.147-152
    • /
    • 2018
  • Lung cancer and pulmonary metastasis are the leading cause of cancer mortality worldwide. Survival for patients with lung metastases is about 5%. Nanoparticles have been developed for the imaging and treatment of various cancers, including pulmonary malignancies. In this work, we report lipid coated polymeric nanoparticles (LPNs) with an average diameter of 154 nm. In vivo performance of LPNs was characterized using optical imaging system. We expect this nanoparticle can be used for finding lung cancer or lung metastasis. Eventually loading therapeutic drug with the nanoparticle will be utilized for cancer diagnosis and effective therapy at the same time.

Self-Assembly and Photopolymerization of Diacetylene Molecules on Surface of Magnetite Nanoparticles

  • Vinod, T.P.;Chang, Ji-Hoon;Kim, Jin-Kwon;Rhee, Seog-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.799-804
    • /
    • 2008
  • An amphiphilic diacetylene compound was deposited on the surface of nano sized magnetite particles ($Fe_3O_4$) using a self-assembly method. The diacetylene molecular assembly formed on the surface of nanoparticle was subjected to photopolymerization. This resulted in the formation of a polymeric assembly on the surface of the nanoparticles in which the adjacent diacetylene molecules were connected through conjugated covalent networks. The presence of immobilized polymer species on the surface of nanoparticles is expected to protect them from agglomeration and ripening, thereby stabilizing their physical properties. In this work, $Fe_3O_4$ nanoparticles were prepared by chemical coprecipitation method and the diacetylene molecule 10,12- pentacosadiynoic acid (PCDA) was anchored to the surface of $Fe_3O_4$ nanoparticles through its carboxylate head group. Irradiation of UV light on the nanoparticles containing immobilized diacetylenes resulted in the formation of a polymeric assembly. Presence of diacetylene molecules on the surface of nanoparticles was confirmed by X-ray photoelectron spectroscopy and FT-IR measurements. Photopolymerization of the diacetylene assembly was detected by UV-Visible spectroscopy. Magnetic properties of the nanoparticles coated with polymeric assembly were investigated with SQUID and magnetic hysteresis showed superparamagnetic behaviors. The results put forward a simple and effective method for achieving polymer coating on the surface of magnetic nanoparticle.

Development of Polymeric Nanopaclitaxel and Comparison with Free Paclitaxel for Effects on Cell Proliferation of MCF-7 and B16F0 Carcinoma Cells

  • Yadav, Deepak;Anwar, Mohammad Faiyaz;Garg, Veena;Kardam, Hemant;Beg, Mohd Nadeem;Suri, Suruchi;Gaur, Sikha;Asif, Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권5호
    • /
    • pp.2335-2340
    • /
    • 2014
  • Paclitaxel is hydrophobic in nature and is recognized as a highly toxic anticancer drug, showing adverse effects in normal body sites. In this study, we developed a polymeric nano drug carrier for safe delivery of the paclitaxel to the cancer that releases the drug in a sustained manner and reduces side effects. N-isopropylacrylamide/vinyl pyrrolidone (NIPAAm/VP) nanoparticles were synthesized by radical polymerization. Physicochemical characterization of the polymeric nanoparticles was conducted using dynamic light scattering, transmission electron microscopy, scanning electron microscopy and nuclear magnetic resonance, which confirmedpolymerization of formulated nanoparticles. Drug release was assessed using a spectrophotometer and cell viability assays were carried out on the MCF-7 breast cancer and B16F0 skin cancer cell lines. NIPAAm/VP nanoparticles demonstrated a size distribution in the 65-108 nm range and surface charge measured -15.4 mV. SEM showed the nanoparticles to be spherical in shape with a slow drug release of ~70% in PBS at $38^{\circ}C$ over 96 h. Drug loaded nanoparticles were associated with increased viability of MCF-7 and B16F0 cells in comparison to free paclitaxel. Nano loaded paclitaxel shows high therapeutic efficiency by sustained release action for the longer period of time, i increasing its efficacy and biocompatibility for human cancer therapy. Therefore, paclitaxel loaded (NIPAAm/VP) nanoparticles may provide opportunities to expand delivery of the drug for clinical selection.

Self-Assembled Polymeric Nanoparticles of Poly(ethylene glycol) Grafted Pullulan Acetate as a Novel Drug Carrier

  • Jung, Sun-Woong;Jeong, Young-Il;Kim, Young-Hoon;Kim, Sung-Ho
    • Archives of Pharmacal Research
    • /
    • 제27권5호
    • /
    • pp.562-569
    • /
    • 2004
  • Self-assembling nanospheres of hydrophobized pullulan have been developed. Pullulan acetate (PA), as hydrophobized pullulan, was synthesized by acetylation. Carboxymethylated poly(ethylene-glycol) (CMPEG) was introduced into pullulan acetate (PA) through a coupling reaction using N, N'-dicyclohexyl carbodiimide (DCC). A synthesized PA-PEG-PA (abbreviated as PEP) conjugate was confirmed by Fourier transform-infrared (FT-IR) spectroscopy. Since PEP conjugates have amphiphilic characteristics in aqueous solution, polymeric nanoparticles of PEP conjugates were prepared using a simple dialysis method in water. From the analysis of fluorescence excitation spectra primarily, the critical association concentration (CAC) of this conjugate was found to be 0.0063 g/L. Observations by scanning electron microscopy (SEM) showed the spherical morphologies of the PEP nanoparticles. The particle size distribution of the PEP conjugates was determined using photon correlation spectroscopy (PCS) and the intensity-average particle size was 193.3 ${\pm}$ 13.53 nm with a unimodal distribution. Clonazepam (CNZ), as a model drug, was easy to entrap into polymeric nanoparticles of the PEP conjugates. The drug release behavior was mainly diffusion controlled from the core portion.

Synthesis, Characterization and in vitro Anti-Tumoral Evaluation of Erlotinib-PCEC Nanoparticles

  • Barghi, Leila;Asgari, Davoud;Barar, Jaleh;Nakhlband, Aylar;Valizadeh, Hadi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10281-10287
    • /
    • 2015
  • Background: Development of a nanosized polymeric delivery system for erlotinib was the main objective of this research. Materials and Methods: Poly caprolactone-polyethylene glycol-polycaprolactone (PCEC) copolymers with different compositions were synthesized via ring opening polymerization. Formation of triblock copolymers was confirmed by HNMR as well as FT-IR. Erlotinib loaded nanoparticles were prepared by means of synthesized copolymers with solvent displacement method. Results: Physicochemical properties of obtained polymeric nanoparticles were dependent on composition of used copolymers. Size of particles was decreased with decreasing the PCL/PEG molar ratio in used copolymers. Encapsulation efficiency of prepared formulations was declined by decreasing their particle size. Drug release behavior from the prepared nanoparticles exhibited a sustained pattern without a burst release. From the release profiles, it can be found that erlotinib release rate from polymeric nanoparticles is decreased by increase of CL/PEG molar ratio of prepared block copolymers. Based on MTT assay results, cell growth inhibition of erlotinib has a dose and time dependent pattern. After 72 hours of exposure, the 50% inhibitory concentration (IC50) of erlotinib hydrochloride was appeared to be $14.8{\mu}M$. Conclusions: From the obtained results, it can be concluded that the prepared PCEC nanoparticles in this study might have the potential to be considered as delivery system for erlotinib.