Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.9.2747

Surface Modification of Colloidal Silica Nanoparticles: Controlling the size and Grafting Process  

He, Wentao (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University)
Wu, Danhua (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University)
Li, Juan (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University)
Zhang, Kai (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University)
Xiang, Yushu (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University)
Long, Lijuan (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University)
Qin, Shuhao (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University)
Yu, Jie (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University)
Zhang, Qin (National Engineering Research Center for Compounding and Modification of Polymeric Materials, and Institute of Mining Technology, GuiZhou University)
Publication Information
Abstract
Surface modification of colloidal silica nanoparticles without disrupting the electric double layer of nanoparticles is a major challenge. In the work, silane was employed to modify colloidal silica nanoparticles without inducing bridge flocculation obviously. The effect of pH value of the silica sol, the amount of silane in feed, and reaction temperature on the graft amount and the final size of modified particles was investigated. The increased weight loss by TG and the appearance of $T_2$ and $T_3$ except for $Q_2$ and $Q_3$ signals by CP/MAS $^{29}Si$ NMR of the modified samples verified the successful grafting of silane. The graft amount reached 0.57 mmol/g, which was slightly lower than theory value, and the particle size remained nearly the same as unmodified particles for acidic silica sol at the optimum condition. For alkaline silica sol after modification, aggregates composed of several nanoparticles connected together with silane moleculars as the bridge appeared.
Keywords
Silica sol; Modification; Silane; Graft amount; Particle size;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P. Langmuir 2000, 16, 6913.   DOI   ScienceOn
2 Kar, M.; Vijayakumar, P. S.; Prasad, B. L. V.; Gupta, S. S. Langmuir 2010, 26, 5772.   DOI   ScienceOn
3 Posthumus, W.; Magusin, P. C. M. M.; Brokken-Zijp, J. C. M.; Tinnemans, A. H. A.; van der Linde, R. J. Colloid Interf. Sci. 2004, 269, 109.   DOI   ScienceOn
4 Chen, X. Y.; Armes, S. P. Adv. Mater. 2003, 15, 1558.   DOI   ScienceOn
5 Arkan, E. Master of Science Thesis, Chalmers University of Technology, Sweden. 2011. http://publications.lib.chalmers.se/records/fulltext/139570.pdf
6 Osterholtz, F. D.; Pohl, E. R. In Silanes and Other Coupling Agents; Mittal, K. L., Ed.; VSP BV, 1992; p 119.
7 Gorl, U.; Hunsche, A. Nippon Gomu Kyokaishi 1998, 71, 549.   DOI
8 He, H. P.; Duchet, J.; Galy, J. J. Colloid Interf. Sci. 2005, 288, 171.   DOI   ScienceOn
9 Park, K. W.; Kwon, O. Y. Bull. Korean Chem. Soc. 2004, 25, 965.   DOI   ScienceOn
10 Miller, J. D.; Ishida, H. Surf. Sci. 1984, 148, 601.   DOI   ScienceOn
11 Abboud, M.; Turner, M.; Duguet, E.; Fontanille, M. J. Mater. Chem. 1997, 7, 1527.   DOI   ScienceOn
12 Nishiyama, N.; Shick, R.; Ishida, H. J. Colloid Interf. Sci. 1991, 143, 146.   DOI   ScienceOn
13 Chan, C. M.; Wu, J. S.; Li, J. X.; Cheung, Y. K. Polym. 2006, 43, 2981.
14 Wu, C. L.; Zhang, M. Q., Rong, M. Z., Friedrich, K. Compos. Sci. Technol. 2005, 65, 635.   DOI   ScienceOn
15 Dougnac, V. N.; Alamillo, R.; Peoples, B. C.; Quijada, R. Polym. 2010, 51, 2918.   DOI   ScienceOn
16 Basavaraja, C.; Kim, N. R.; Jo, E. A.; Revanasiddappa, M.; Huh, D. S. Bull. Korean Chem. Soc. 2010, 31, 298.   DOI   ScienceOn
17 Radu, D. R.; Lai, C. Y.; Jeftinija, K.; Rowe, E. W.; Jeftinija, S.; Lin, V. S. Y. J. Am. Chem. Soc. 2004, 126, 13216.   DOI   ScienceOn
18 Nitta, K.; Asuka, K.; Liu, B.; Terano, M. Polym. 2006, 47, 6457.   DOI   ScienceOn
19 Yuvaraj, H.; Shimb, J. J.; Lim, K. T. Polym. Adv. Technol. 2010, 21, 424.
20 Liu, Y. L.; Hsu, C. Y.; Wang, M. L.; Chen, H. S. Nanotechnol. 2003, 14, 813.   DOI   ScienceOn
21 Mahltig, B.; Bottcher, H. J. Sol-Gel Sci. Technol. 2003, 27, 43.   DOI   ScienceOn
22 Schmid, A.; Tonnar, J.; Armes, S. P. Adv. Mater. 2008, 20, 3331.   DOI   ScienceOn
23 Han, M. G.; Armes, S. P. J. Colloid Interf. Sci. 2003, 262, 418.   DOI   ScienceOn
24 Wu, L. B.; Cao, D.; Huang, Y.; Li, B. G. Polym. 2008, 49, 742.   DOI   ScienceOn