Browse > Article
http://dx.doi.org/10.4014/jmb.1007.07041

Amphotericin B Aggregation Inhibition with Novel Nanoparticles Prepared with Poly(${\varepsilon}$-caprolactone)/Poly(N,N-dimethylamino-2-ethyl methacrylate) Diblock Copolymer  

Shim, Yong-Ho (Laboratory of Polymeric and Composite Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-Hainaut)
Kim, You-Chan (Department of Food Science and Biotechnology, Sungkyunkwan University)
Lee, Hong-Joo (Gwangju Development Institute)
Bougard, Francois (Laboratory of Polymeric and Composite Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-Hainaut)
Dubois, Philippe (Laboratory of Polymeric and Composite Materials, Center for Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-Hainaut)
Choi, Ki-Choon (Grassland and Forages Research Center, National Institute of Animal Science, Rural Development Administration)
Chung, Chung-Wook (National Research and Development Center for Hepatobiliary Disease, Pusan National University Yangsan Hospital)
Kang, Dae-Hwan (National Research and Development Center for Hepatobiliary Disease, Pusan National University Yangsan Hospital)
Jeong, Young-Il (National Research and Development Center for Hepatobiliary Disease, Pusan National University Yangsan Hospital)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.1, 2011 , pp. 28-36 More about this Journal
Abstract
Diblock copolymers composed of poly(${\varepsilon}$-caprolactone) (PCL) and poly(N,N-dimethylamino-2-ethyl methacrylate) (PDMAEMA), or methoxy polyethylene glycol(PEG), were synthesized via a combination of ring-opening polymerization and atom-transfer radical polymerization in order to prepare polymeric nanoparticles as an antifungal drug carrier. Amphotericin B (AmB), a natural antibiotic, was incorporated into the polymeric nanoparticles. The physical properties of AmB-incorporated polymeric nanoparticles with PCL-b-PDMAEMA and PCL-b-PEG were studied in relation to morphology and particle size. In the aggregation state study, AmB-incorporated PCL-b- PDMAEMA nanoparticles exhibited a monomeric state pattern of free AmB, whereas AmB-incorporated PCL-b- PEG nanoparticles displayed an aggregated pattern. In in vitro hemolysis tests with human red blood cells, AmBincorporated PCL-b-PDMAEMA nanoparticles were seen to be 10 times less cytotoxic than free AmB (5 ${\mu}g$/ml). In addition, an improved antifungal activity of AmBincorporated polymeric nanoparticles was observed through antifungal activity tests using Candida albicans, whereas polymeric nanoparticles themselves were seen not to affect activity. Finally, in vitro AmB release studies were conducted, proving the potential of AmB-incorporated PCL-b-PDMAEMA nanoparticles as a new formulation candidate for AmB.
Keywords
Amphotericin B; infectious disease; nanoparticle; hemolysis; Candida albicans;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bougard, F., C. Giacomelli, L. Mespouille, R. Borsali, Ph. Dubois, and R. Lazzaroni. 2008. Influence of the macromolecular architecture on the self-assembly of amphiphilic copolymers based on poly(N,N-dimethylamino-2-ethyl methacrylate) and poly($\varepsilon$-caprolactone). Langmuir 24: 8272-8279.   DOI   ScienceOn
2 Spasova, M., L. Mespouille, O. Coulembier, D. Paneva, N. Manolova, I. Rashkov, and P. Dubois. 2009. Amphiphilic poly(D-or L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) block copolymers: Controlled synthesis, characterization, and stereocomplex formation. Biomacromolecules 10: 1217-1223.   DOI   ScienceOn
3 Choi, K. C., J. Y. Bang, P. I. Kim, C. Kim, and C. E. Song. 2008. Amphotericin B-incorporated polymeric micelles composed of poly(D,L-lactide-co-glycolide)/dextran graft copolymer. Int. J. Pharm. 355: 224-230.   DOI
4 Deray, G. 2002. Amphotericin B nephrotoxicity. J. Antimicrob. Chemother. 49: 37-41.   DOI   ScienceOn
5 Deshpande, M. C., M. C. Davies, M. C. Garnett, P. M. Williams, D. Armitage, L. Bailey, M. Vamvakaki, S. P. Armes, and S. Stolnik. 2004. The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes J. Control. Release 97: 143-156.   DOI   ScienceOn
6 Dupont, B. 2002. Overview of the lipid formulations of amphotericin B. J. Antimicrob. Chemother. 49(Suppl S1): 31-36.
7 Gallis, H. A., R. H. Drew, and W. W. Pickard. 1990. Amphotericin B: 30 years of clinical experience. Rev. Infect. Dis. 12: 308-329.   DOI
8 Gref, R., Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. 1994. Biodegradable long-circulating polymeric nanospheres. Science 263: 1600-1603.   DOI
9 Jeong, Y. I., J. B. Cheon, S. H. Kim, J. W. Nah, Y. M. Lee, Y. K. Sung, T. Akaike, and C. S. Cho. 1998. Clonazepam release from core-shell type nanoparticles in vitro. J. Control. Release 5: 169-178.
10 Ichinose, K., N. Tomiyama, M. Nakashima, Y. Ohya, M. Ichikawa, T. Ouchi, and T. Kanematsu. 2000. Antitumor activity of dextran derivatives immobilizing platinum complex (II). Anticancer Drugs 11: 33-38.   DOI   ScienceOn
11 Jeong, Y. I., M. K. Kang, H. S. Sun, S. S. Kang, H. W. Kim, K. S. Moon, K. J. Lee, S. H. Kim, and S. Jung. 2004. All-transretinoic acid release from core-shell type nanoparticles of poly($\varepsilon$-caprolactone)/poly(ethylene glycol) diblock copolymer. Int. J. Pharm. 273: 95-107.   DOI
12 Kataoka, K., G. S. Kwon, M. Yokohama, T. Okano, and Y. Sakurai. 1993. Block copolymer micelles as vehicles for drug delivery. J. Control. Release 24: 119-132.   DOI   ScienceOn
13 Kwon, G. S., M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. 1995. Physical entrapment of adriamycin in AB block copolymer micelles. Pharm. Res. 12: 192-195.   DOI   ScienceOn
14 Larabi, M., V. Yardley, P. M. Loiseau, M. Appel, P. Legrand, A. Gulik, C. Bories, S. L. Croft, and G. Barrat. 2003. Toxicity and antileishmanial activity of a new stable lipid suspension of amphotericin B. Antimicrob. Agents Chemother. 47: 3774-3779.   DOI   ScienceOn
15 Berman, J. D. 1997. Human leishmaniasis: Clinical, diagnostic and chemotherapeutic developments in past 10 years. Clin. Infect. Dis. 24: 684-703.   DOI   ScienceOn
16 Groll, A. H. and T. J. Walsh. 2001. Uncommon opportunistic fungi: New nosocomial threats. Clin. Microbiol. Infect. 7(Suppl 2): 8-24.
17 Adams, M. L. and G. S. Kwon. 2003. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-L-aspartamide)-acyl conjugate micelles: Effects of acyl chain length. J. Control. Release 87: 23-32.   DOI
18 Barwicz, J., S. Christian, and I. Gruda. 1992. Effects of aggregation of amphotericin B on its toxicity to mice. Antimicrob. Agents Chemother. 36: 2310-2315.   DOI   ScienceOn
19 Bolard, J., P. Legrand, F. Heitz, and B. Cybulska. 1991. Onesided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry 30: 5707-5715.   DOI   ScienceOn
20 Bougard, F., M. Jeusette, L. Mespouille, P. Dubois, and R. Lazzaroni. 2007. Synthesis and supramolecular organization of amphiphilic diblock copolymers combining poly(N,N-dimethylamino- 2-ethyl methacrylate) and poly($\varepsilon$-caprolactone). Langmuir 23: 2339-2345.   DOI   ScienceOn
21 Shim, Y. H., F. Bougard, R. Lazzaroni, and P. Dubois. 2008. Synthesis and aqueous solution properties of 2-(dimethylamino)ethyl methacrylate based (co)polymers: Viscometric and AFM analysis. Eur. Pol. J. 44: 3715-3723.   DOI   ScienceOn
22 Lavasanifar, A., J. Samuel, S. Sattari, and G. S. Kwon. 2002. Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm. Res. 19: 418-422.   DOI   ScienceOn
23 Legrand, P., E. Romero, J. P. Devissaguet, C. B. Eleazar, and J. Bolard. 1992. Effects of aggregation and solvent on toxicity of amphotericin B to human erythrocytes. Antimicrob. Agents Chemother. 36: 2518-2522.   DOI   ScienceOn
24 Mouton, J. W., D. T. Te Dorsthorst, J. F. Meis, and P. E. Verweij. 2009. Dose-response relationships of three amphotericin B formulations in a non-neutropenic murine model of invasive aspergillosis. Med. Mycol. 29: 1-7.
25 Vandermeulen, G., L. Rouxhet, A. Arien, M. E. Brewster, and V. Preat. 2006. Encapsulation of amphotericin B in poly(ethylene glycol)-block-poly($\varepsilon$-caprolactone-co-trimethylenecarbonate) polymeric micelles. Int. J. Pharm. 309: 234-240.   DOI   ScienceOn
26 Walsh, T. J., J. Hiemenz, and E. Anaissie. 1996. Recent progress and current problems in treatment of invasive fungal infections in neuropenic patients. Infect. Dis. Clin. North Am. 10: 365-400.   DOI   ScienceOn
27 Yu, B., T. Okano, K. Kataoka, S. Sardari, and G. Kwon. 1998. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(betabenzyl-L-aspartate) micelles. J. Control. Release 56: 285-291.   DOI   ScienceOn
28 Yardley, V. and S. J. Croft. 1997. Activity of liposomal amphotericin B against experimental cutaneous leishmaniasis. Antimicrob. Agents Chemother. 41: 752-756.