• Title/Summary/Keyword: Polymer nanocomposites

Search Result 372, Processing Time 0.024 seconds

Graphene Oxide/Polyimide Nanocomposites for Gas Barrier Applications (산화그래핀이 함유된 폴리이미드 나노복합막의 기체차단성 평가 및 활용)

  • Yoo, Byung Min;Lee, Min Yong;Park, Ho Bum
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.154-166
    • /
    • 2017
  • Polymeric films for gas barrier applications such as food packaging and electronic devices have attracted great interest due to their cheap, light and easy processability among gas barrier materials. Especially in electronic devices, extremely low gas permeance is necessary for maintaining the device performance. However, current polymeric barrier films still suffer from relatively high gas permeance than other materials. Therefore, there have been strong needs to enhance the gas barrier performance of polymeric barrier films while keep their own advantages. Recently, graphene is highlighted as a 2D-layered material for gas barrier applications. However, owing to the poor workability and difficulty to produce in engineering scale, graphene oxide (GO) is on the rise. GO consists of oxygen-containing functional groups on surface with intrinsic 2D-layered structure and high aspect ratio, and it can be well-dispersed in aqueous polar solvents like water, resulting in scalable mass production. Here, we prepared GO incorporated polyimide (PI) nanocomposites. PI is widely used barrier polymer with high mechanical strength and thermal and chemical stability. We demonstrated that PI/GO nanocomposites could perform as a gas barrier. Furthermore, surfactants (Triton X-100 (TX) and Sodium deoxycholate (SDC)) are introduced to enhance the gas barrier performance by improving the degree of dispersion of GO in PI matrix. As a result, TX enhanced the gas barrier performance of PI/GO nanocomposites which is similar to predicted value. This finding will provide new insight to polymer nanocomposites for gas barrier applications.

Autohesion Behavior of Brominated-Isobutylene-Isoprene Gum Nanocomposites with Layered Clay (층상점토 충전 브롬화 이소부틸-이소프렌 검 나노복합체의 점착거동)

  • Mensah, Bismark;Kim, Sungjin;Lee, Dae Hak;Kim, Han Gil;Oh, Jong Gab;Nah, Changwoon
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.43-52
    • /
    • 2014
  • The effect of nanoclay (Cloisite 20A) on the self-adhesion behavior of uncured brominated-isobutylene-isoprene rubber (BIIR) has been studied. The dispersion state of nanoclay into the rubber matrix was examined by SEM, TEM and XRD analysis. The thermal degradation behavior of the filled and unfilled samples was examined by TGA and improvement in the thermal stability of the nanocomposites occurred based on the weight loss (%) measurements. Also, addition of nanoclay enhanced the cohesive strength of the material by reinforcement action thereby reducing the degree of molecular diffusion across the interface of butyl rubber. However, the average depth of penetration of the inter-diffused chains was still adequate to form entanglement on either side of the interface, and thus offered greater resistance to peeling, resulting in high tack strength measurements. The improvement in tack strength was only achieved at critical nanoclay loading above 8 phr. Contact angle measurement was also made to examine the surface characteristics. There was no significant interfacial property change by employing the nanoclay.

Effect of A-Zeolite on the Crystallization Behavior of In-situ Polymerized Poly(ethylene terephthalate) (PET) Nanocomposites

  • Shin, Young-Hak;Lee, Wan-Duk;Im, Seung-Soon
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.662-670
    • /
    • 2007
  • The crystallization behavior and fine structure of poly(ethylene terephthalate) (PET)/A-zeolite nanocomposites were assessed via differential scanning calorimetry (DSC) and time-resolved small-angle X-ray scattering (TR-SAXS). The Avrami exponent increased from 3.5 to approximately 4.5 with increasing A-zeolite contents, thereby indicating a change in crystal growth formation. The rate constant, k, evidenced an increasing trend with increases in A-zeolite contents. The SAXS data revealed morphological changes occurring during isothermal crystallization. As the zeolite content increased, the long period and amorphous region size also increased. It has been suggested that, since PET molecules passed through the zeolite pores, some of them are rejected into the amorphous region, thereby resulting in increased amorphous region size and increased long period, respectively. In addition, as PET chains piercing into A-zeolite pores cannot precipitate perfect crystal folding, imperfect crystals begin to melt at an earlier temperature, as was revealed by the SAXS profiles obtained during heating. However, the spherulite size was reduced with increasing nanofiller content, because impingement between adjacent spherulites in the nanocomposite occurs earlier than that of homo PET, due to the increase in nucleating sites.

Novel Preparation of Epoxy/Silica Nanocomposite Using Si-N Precursor (Si-N 전구체를 이용한 에폭시/실리카 나노복합재료의 제조)

  • Kim Lee Ju;Yoon Ho Gyu;Lee Sang-Soo;Kim Junkyung
    • Polymer(Korea)
    • /
    • v.28 no.5
    • /
    • pp.391-396
    • /
    • 2004
  • In order to overcome drawbacks in the conventional preparation of epoxy/silica nanocomposites, such as formation of micro voids and dimensional instability caused by evolution of volatile by-products during curing reaction, a novel preparation method using Si-N precursor has been proposed. When prepared through in-situ reaction of epoxy curing reaction with sol-gel reaction of Si-N precursor, methyltripiperidinylsilane (MTPS) which does not produce by-products during reaction, epoxy/silica nanocomposites of extremely even dispersion of inorganic phase could be successfully prepared, resulting in high enhancement of mechanical and thermal properties as well as outstanding transparency.

Nanocomposites Based on Montmorillonite and Thermotropic Liquid Crystalline Polyester (몬모릴로나이트를 이용한 열방성 액정 폴리에스테르의 나노복합재료)

  • 박대근;장진해
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.399-406
    • /
    • 2000
  • A thermotropic liquid crystalline polymer (TLCP) containing a flexible spacer was synthesized from hydroquinone, p-hydrofybenzoic acid, and 1,6-dibromohexane. Intercalation of TLCP in layered clays is accomplished by heating the polymer with dodecyl ammonium-montmorillonite (C$_{12}$-MMT) above melt transition temperature (T$_{m}$). Liquid crystallinity of the TLCP/C$_{12}$-MMT hybrid was not observed when $C_{12}$-MMT content was above 1 wt%. Some of the $C_{12}$-MMTs in TLCP were highly dispersed in a nanometer scale, but some of them were agglomerated. Thermal and morphological properties of the nanocomposites were examined by differential scanning calorimetry (DSC), thermogravimetric analyzer (TGA), polarized optical microscope, and electron microscopes (SEM and TEM). TEM).

  • PDF

Intercalation of Polycarbonate/Montmorillonite Nanocomposites (폴리카보네이트와 몬모릴로나이트 나노복합체의 층간삽입)

  • 이양훈;홍성권;윤광수;최일석;이성구
    • Polymer(Korea)
    • /
    • v.25 no.6
    • /
    • pp.818-825
    • /
    • 2001
  • Polycarbonate(PC)/montmorillonite (MMT) nanocomposites were prepared by solution and melt mixing methods. A d-spacing of the nanocomposites was measured by an X-ray diffractometer. Neat montmorillonite (MMT-Na) and MMTs modified by dodecyl ammonium (MMT-DA) or dimethyl hydrogenated tallow 2-ethylhexyl ammonium (MMT-25A) were used. The d-spacing value of PC/MMT-25A and PC/MMT-DA was higher than that of PC/MMT-Na. The d-spacing increased from around 12 to $37AA$ depending on the mixing method. PC was more readily introduced to the gallery of MMT as the molecular weight of PC reduced and the mixing time increased. PC/MMT-25A showed higher thermal stability by thermogravimetric analysis (TGA) than PC/MMT-DA and PC/MMT-Na.

  • PDF

Synthesis and Optical Property of BaTiO3 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process (염 보조 초음파 분무 열분해 공정을 이용한 BaTiO3 나노입자의 합성과 광학적 성질)

  • Hwangbo, Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate ($BaTiO_3$) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for $BaTiO_3$ nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing $BaTiO_3$ nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of $BaTiO_3$ nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.

Mechanical and Thermal Behavior of Polyamide-6/Clay Nanocomposite Using Continuum-based Micromechanical Modeling

  • Weon, Jong-Il
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.797-806
    • /
    • 2009
  • The mechanical and thermal behaviors of polyamide-6/clay nanocomposites were studied using the continuum-based, micromechanical models such as Mori-Tanaka, Halpin-Tsai and shear lag. Mechanic-based model prediction provides a better understanding regarding the dependence of the nanocomposites' reinforcement efficiency on conventional filler structural parameters such as filler aspect ratio ($\alpha$), filler orientation (S), filler weight fraction (${\Psi}_f$), and filler/matrix stiffness ratio ($E_f/E_m$). For an intercalated and exfoliated nanocomposite, an effective, filler-based, micromechanical model that includes effective filler structural parameters, the number of platelets per stack (n) and the silicate inter-layer spacing ($d_{001}$), is proposed to describe the mesoscopic intercalated filler and the nanoscopic exfoliated filler. The proposed model nicely captures the experimental modulus behaviors for both intercalated and exfoliated nanocomposites. In addition, the model prediction of the heat distortion temperature is examined for nanocomposites with different filler aspect ratio. The predicted heat distortion temperature appears to be reasonable compared to the heat distortion temperature obtained by experimental tests. Based on both the experimental results and model prediction, the reinforcement efficiency and heat resistance of the polyamide-6/clay nanocomposites definitely depend on both conventional (${\alpha},\;S,\;{\Psi}_f,\;E_f/E_m$) and effective (n, $d_{001}$) filler structural parameters.

Influence of Organomodified Nanoclay on the Mechanical and Flammability behavior of Jute Fabric/Vinyl Ester Nanocomposites

  • Latif, M.;Prabhakar, M.N.;Nam, Gi-Beop;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • Organo-montmorillonite (OMMT) has attracted much attention for fiber-reinforced polymer composites as a filler material due to high aspect ratio and low charge density. The present study focused on the fabrication of nanocomposites using Vinyl ester and Jute fabric as matrix and reinforcement respectively. The OMMT was uniformly dispersed in vinyl ester resin at 1, 2 and 3 wt%, loading through high speed mechanical stirrer at room temperature and further nanocomposites were manufactured through vacuum assisted resin infusion (VARI) technique. Effects of OMMT on the mechanical properties of vinyl ester/Jute composites were carefully investigated through tensile, bending and Izod impact tests, which revealed significant improvement in mechanical properties. The morphology of the nanocomposites after tensile test was investigated by SEM which affirmed that OMMT filled nanocomposites has improved interactions with the host matrix than the pure composites. Based on the nature and flame retardancy mechanism, the OMMT slightly improved the flammability property which was clearly explained by horizontal burning test.

Improvement of Mechanical Interfacial Properties of Epoxy/Clay Nanocomposites Using Silane Intercalant (실란유기화제를 이용한 에폭시/클레이 나노복합재료의 기계적 계면 물성 향상)

  • Park, Soo-Jin;Seo, Dong-Il;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.125-128
    • /
    • 2001
  • In this wort, the $Na^+-MMT$ has organically modified with silane intercalant to prepare the polymer/clay nanocomposites. The pH. X-ray diffraction (XRD), and contact angles were used to analyze the surface properties of clay and the exfoliation phenomenon of clay interlayer, The mechanical interfacial properties of epoxy/clay nanocomposites were investigated by three-point bending test. From the experimental results. the surface modification made by silane intercalant on clay surface leads to an increase of distance of silicate layers, surface acid value. and electron acceptor parameter of organoclay. The treatments are also necessary and useful for epoxy to intercalate into the interlayer by interacting of electron donor-accepter between basic epoxy and clay surface. The mechanical interfacial properties of the nanocomposites was improved by the presence of dispersed clay nanolayer containing low content of organoclay in comparison with the conventional, which increase the interfacial adhesion between dispersed clay and epoxy resins.

  • PDF