DOI QR코드

DOI QR Code

Graphene Oxide/Polyimide Nanocomposites for Gas Barrier Applications

산화그래핀이 함유된 폴리이미드 나노복합막의 기체차단성 평가 및 활용

  • Yoo, Byung Min (Department of Energy Engineering, Hanyang University) ;
  • Lee, Min Yong (Department of Energy Engineering, Hanyang University) ;
  • Park, Ho Bum (Department of Energy Engineering, Hanyang University)
  • 유병민 (한양대학교 에너지공학과) ;
  • 이민용 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2017.04.18
  • Accepted : 2017.04.25
  • Published : 2017.04.30

Abstract

Polymeric films for gas barrier applications such as food packaging and electronic devices have attracted great interest due to their cheap, light and easy processability among gas barrier materials. Especially in electronic devices, extremely low gas permeance is necessary for maintaining the device performance. However, current polymeric barrier films still suffer from relatively high gas permeance than other materials. Therefore, there have been strong needs to enhance the gas barrier performance of polymeric barrier films while keep their own advantages. Recently, graphene is highlighted as a 2D-layered material for gas barrier applications. However, owing to the poor workability and difficulty to produce in engineering scale, graphene oxide (GO) is on the rise. GO consists of oxygen-containing functional groups on surface with intrinsic 2D-layered structure and high aspect ratio, and it can be well-dispersed in aqueous polar solvents like water, resulting in scalable mass production. Here, we prepared GO incorporated polyimide (PI) nanocomposites. PI is widely used barrier polymer with high mechanical strength and thermal and chemical stability. We demonstrated that PI/GO nanocomposites could perform as a gas barrier. Furthermore, surfactants (Triton X-100 (TX) and Sodium deoxycholate (SDC)) are introduced to enhance the gas barrier performance by improving the degree of dispersion of GO in PI matrix. As a result, TX enhanced the gas barrier performance of PI/GO nanocomposites which is similar to predicted value. This finding will provide new insight to polymer nanocomposites for gas barrier applications.

식품 포장, 전자 기기 등에 활용되고 있는 고분자 기반 기체 차단성 필름은 경량성, 낮은 제조 원가, 높은 가공성으로 인하여 많은 주목을 받고 있다. 특히 전자기기에 활용되기 위하여, 기체 차단 필름은 매우 높은 수준의 기체 차단성을 요구받고 있다. 하지만 현재 수준의 고분자 기반 기체 차단 필름은 다른 소재와 비교하여 상대적으로 높은 수준의 기체 투과유량을 보이고 있다. 따라서 기존의 고분자 필름이 가지고 있는 장점을 유지하면서 더 높은 수준의 기체 차단성을 부여하기 위한 요구가 증대되고 있다. 최근 그래핀 소재는 기체 차단을 위한 2차원 소재로서 각광받고 있다. 그러나 그래핀 소재의 낮은 가공성과 어려운 대면적화 문제 때문에 산화그래핀이 그 대안으로서 떠오르고 있다. 산화그래핀은 높은 종횡비를 가지는 2차원 층상구조의 그래핀에 산소관능기를 함유한 형태로서, 수용성 혹은 극성 용매에 잘 분산되는 성질을 가지며, 따라서 대량 생산에 용이한 특성을 가지고 있다. 본 연구에서는, 산화그래핀이 함유된 폴리이미드 나노복합막을 제조하였다. 폴리이미드는 현재 널리 이용되고 있는 기체 차단성 고분자 중의 하나로서 높은 기계적 강도, 열적 안정성 및 내화학성을 가지고 있다. 본 연구를 통하여 산화그래핀이 함유된 폴리이미드 나노복합막이 기체 차단성을 가지고 있음을 확인하였다. 더 나아가, Triton X-100이나 sodium deoxycholate (SDC) 등의 계면활성제를 나노복합막에 도입함으로써 산화그래핀의 고분자 매트릭스 내에서의 분산성을 향상시켜 기체 차단성을 높이고자 하였다. 그 결과로서, Triton X-100이 도입된 나노복합막이 예상치와 유사한, 향상된 기체 차단성을 보임을 확인하였다. 본 연구를 기반으로 고분자 기반 나노복합막의 기체 차단성 분야로의 활용성이 증대될 것으로 기대한다.

Keywords

References

  1. A. Arora and G. W. Padua, "Review: nanocomposites in food packaging", J. Food. Sci., 75, R43 (2010). https://doi.org/10.1111/j.1750-3841.2009.01456.x
  2. H. M. C. de Azeredo, "Nanocomposites for food packaging applications", Food Research International, 42, 1240 (2009). https://doi.org/10.1016/j.foodres.2009.03.019
  3. J. W. Oh, Y. Ko, K. C. Song, and S. U. Hong, "Preparation of alumina sol coated BOPP composites and their gas permeation characteristics", Membr. J., 19, 19 (2009).
  4. J. S. Park, H. Chae, H. K. Chung, and S. I. Lee, "Thin film encapsulation for flexible AM-OLED: a review", Semicond. Sci. Tech., 26, 034001 (2011). https://doi.org/10.1088/0268-1242/26/3/034001
  5. A. Hu, J. Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, and C. X. Xu, "Low temperature sintering of Ag nanoparticles for flexible electronics packaging", Appl. Phys. Lett., 97, 153117 (2010). https://doi.org/10.1063/1.3502604
  6. J. Lange and Y. Wyser, "Recent innovations in barrier technologies for plastic packaging - a review", Packag. Technol. Sci., 16, 149-158 (2003). https://doi.org/10.1002/pts.621
  7. Y. H. Yang, M. Haile, Y. T. Park, F. A. Malek, and J. C. Grunlan, "Super gas barrier of all-polymer multilayer thin films", Macromolecules, 44, 1450 (2011). https://doi.org/10.1021/ma1026127
  8. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, "Impermeable atomic membranes from graphene sheets", Nano. Lett., 8, 2458 (2008). https://doi.org/10.1021/nl801457b
  9. O. Leenaerts, B. Partoens, and F. M. Peeters, "Graphene: A perfect nanoballoon", Appl. Phys. Lett., 93, 193107 (2008). https://doi.org/10.1063/1.3021413
  10. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  11. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene", Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965
  12. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide", Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/B917103G
  13. J. T. Robinson, M. Zalalutdinov, J. W. Baldwin, E. S. Snow, Z. Q. Wei, P. Sheehan, and B. H. Houston, "Wafer-scale reduced graphene oxide films for nanomechanical devices", Nano. Lett., 8, 3441 (2008). https://doi.org/10.1021/nl8023092
  14. J. P. Zhao, S. F. Pei, W. C. Ren, L. B. Gao, and H. M. Cheng, "Efficient preparation of large-area graphene oxide sheets for transparent conductive films", ACS Nano, 4, 5245-5252 (2010). https://doi.org/10.1021/nn1015506
  15. S. Singh, B. C. Yadav, P. Tandon, M. Singh, A. Shukla, G. I. Dzhardimalieva, S. I. Pomogailo, N. D. Golubeva, and A. D. Pomogailo, "Polymer-assisted synthesis of metallopolymer nanocomposites and their applications in liquefied petroleum gas sensing at room temperature", Sensors and Actuators B: Chemical, 166-167, 281 (2012). https://doi.org/10.1016/j.snb.2012.02.063
  16. A. P. Kumar, D. Depan, N. S. Tomer, and R. P. Singh, "Nanoscale particles for polymer degradation and stabilization-trends and future perspectives", Prog. Polym. Sci., 34, 479 (2009). https://doi.org/10.1016/j.progpolymsci.2009.01.002
  17. M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. H. Song, Z. Z. Yu, and N. Koratkar, "Fracture and fatigue in graphene nanocomposites", Small, 6, 179 (2010). https://doi.org/10.1002/smll.200901480
  18. J. L. Vickery, A. J. Patil, and S. Mann, "Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures", Adv. Mater., 21, 2180 (2009). https://doi.org/10.1002/adma.200803606
  19. A. Holmberg, L. Piculell, and M. Nyden, "Effects of an amphiphilic graft copolymer on an oil-continuous microemulsion. Molecular self-diffusion and viscosity", J. Phys. Chem. B, 106, 2533 (2002). https://doi.org/10.1021/jp0139235
  20. A. Capalbi and C. La Mesa, "Polymer-surfactant interactions", J. Therm. Anal. Calorim., 66, 233 (2001). https://doi.org/10.1023/A:1012456202997
  21. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, "Synthesis and properties of polyimide-clay hybrid", J. Polym. Sci. Part A: Polym. Chem., 31, 2493 (1993). https://doi.org/10.1002/pola.1993.080311009
  22. J. H. Chang, K. M. Park, D. Cho, H. S. Yang, and K. J. Ihn, "Preparation and characterization of polyimide nanocomposites with different organo-montmorillonites", Polym. Eng. & Sci., 41, 1514 (2001). https://doi.org/10.1002/pen.10850
  23. W. S. Hummers and R. E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc., 80, 1339 (1958). https://doi.org/10.1021/ja01539a017
  24. F. Kim, J. Y. Luo, R. Cruz-Silva, L. J. Cote, K. Sohn, and J. X. Huang, "Self-propagating domino-like reactions in oxidized graphite", Adv. Funct. Mater., 20, 2867-2873 (2010). https://doi.org/10.1002/adfm.201000736
  25. H. Czichos, T. Saito, and L. Smith, "Springers handbook of materials measurement methods", Springers, Germany (2006).
  26. L. Y. Jiang, T.-S. Chung, and R. Rajagopalan, "Dehydration of alcohols by pervaporation through polyimide asymmetric hollow fibers with various modifications", Chem. Eng. Sci., 63, 204 (2008). https://doi.org/10.1016/j.ces.2007.09.026
  27. G. Choudalakis and A. D. Gotsis, "Permeability of polymer/clay nanocomposites: a review", Eur. Polym. J., 45, 967 (2009). https://doi.org/10.1016/j.eurpolymj.2009.01.027
  28. L. E. Nielsen, "Models for the permeability of filled polymer systems", J. Macro. Sci.: Part A - Chem., 1, 929 (1967). https://doi.org/10.1080/10601326708053745
  29. S. Sinha Ray and M. Okamoto, "Polymer/layered silicate nanocomposites: a review from preparation to processing", Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  30. S. V. Meille, S. Bruckner, and W. Porzio, "Gamma-isotactic polypropylene - a structure with nonparallel chain axes", Macromolecules, 23, 4114 (1990). https://doi.org/10.1021/ma00220a014
  31. G. Gorrasi, L. Tammaro, M. Tortora, V. Vittoria, D. Kaempfer, P. Reichert, and R. Mulhaupt, "Transport properties of organic vapors in nanocomposites of isotactic polypropylene", J. Polym. Sci. Part B - Poly. Phys., 41, 1798 (2003). https://doi.org/10.1002/polb.10541
  32. B. M. Yoo, H. J. Shin, H. W. Yoon, and H. B. Park, "Graphene and graphene oxide and their uses in barrier polymers", J. Appl. Polym. Sci., 131, 39628 (2014).
  33. S. Nazarenko, P. Meneghetti, P. Julmon, B. G. Olson, and S. Qutubuddin, "Gas barrier of polystyrene montmorillonite clay nanocomposites: Effect of mineral layer aggregation", J. Polym. Sci. Part B - Poly. Phys., 45, 1733 (2007). https://doi.org/10.1002/polb.21181