Browse > Article

Effect of A-Zeolite on the Crystallization Behavior of In-situ Polymerized Poly(ethylene terephthalate) (PET) Nanocomposites  

Shin, Young-Hak (Department of Fiber & Polymer Engineering, College of Engineering, Hanyang University)
Lee, Wan-Duk (Department of Fiber & Polymer Engineering, College of Engineering, Hanyang University)
Im, Seung-Soon (Department of Fiber & Polymer Engineering, College of Engineering, Hanyang University)
Publication Information
Macromolecular Research / v.15, no.7, 2007 , pp. 662-670 More about this Journal
Abstract
The crystallization behavior and fine structure of poly(ethylene terephthalate) (PET)/A-zeolite nanocomposites were assessed via differential scanning calorimetry (DSC) and time-resolved small-angle X-ray scattering (TR-SAXS). The Avrami exponent increased from 3.5 to approximately 4.5 with increasing A-zeolite contents, thereby indicating a change in crystal growth formation. The rate constant, k, evidenced an increasing trend with increases in A-zeolite contents. The SAXS data revealed morphological changes occurring during isothermal crystallization. As the zeolite content increased, the long period and amorphous region size also increased. It has been suggested that, since PET molecules passed through the zeolite pores, some of them are rejected into the amorphous region, thereby resulting in increased amorphous region size and increased long period, respectively. In addition, as PET chains piercing into A-zeolite pores cannot precipitate perfect crystal folding, imperfect crystals begin to melt at an earlier temperature, as was revealed by the SAXS profiles obtained during heating. However, the spherulite size was reduced with increasing nanofiller content, because impingement between adjacent spherulites in the nanocomposite occurs earlier than that of homo PET, due to the increase in nucleating sites.
Keywords
PET; A-zeolite; nanocomposite; crystallization behavior; fine structure;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 8
연도 인용수 순위
1 Y. Wang, C. Shen, H. Li, Q. Li, and J. Chen, J. Appl. Polym. Sci., 91, 308 (2004)   DOI   ScienceOn
2 Y. C. Ke, Z. B. Yang, and C. F. Zhu, J. Appl. Polym. Sci., 85, 2677 (2002)
3 C. G. Wu and T. Bein, Science, 266, 1013 (1994)   DOI
4 M. J. Avrami, Chem. Phys., 7, 1103 (1939)
5 J. D. Hoffman and R. L. Miller, Polymer, 38, 3151 (1997)
6 X. F. Lu and J. N. Hay, Polymer, 42, 9423 (2001)   DOI   ScienceOn
7 J. Ma, S. Zhang, Z. Qi, G. Li, and Y. Hu, J. Appl. Polym. Sci., 83, 1978 (2002)
8 R. Verma, H. Marand, and B. S. Hsiao, Macromolecules, 29, 7767 (1996)
9 W. Liu, X. Tian, P. Cui, Y. Li, K. Zheng, and Y. Yang, J. Appl. Polym. Sci., 91, 1229 (2004)   DOI   ScienceOn
10 J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, in Treatise on Solid State Chemistry, N. B. Hannay, Ed., Plenum Press, New York, Chapter 7, 1976
11 W. D. Lee and S. S. Im, J. Polym. Sci.; Part B: Polym. Phys., 43, 805 (2005)   DOI   ScienceOn
12 B. S. Hsiao, K. H. Gardner, D. Q. Wu, and B. Chu, Polymer, 34, 3996 (1993)
13 H. L. Frisch, S. Maaref, Y. Xue, G. Beaucage, Z. Pu, and J. E. Mark, J. Polym. Sci., 34, 673 (1996)
14 H. Marand, J. Xu, and S. Srinivas, Macromolecules, 31, 8219 (1998)
15 K. N. Kruger and H. G. Zachmann, Macromolecules, 26, 5202 (1993)
16 S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of Zeolite Science and Technology, Marcel Dekker, New York, 2003, p 85
17 G. Zhang, T. Shichi, and K. Takagi, Mater. Lett., 57, 1858 (2003)   DOI   ScienceOn
18 F. Avalos, M. A. Lopez-Manchado, and M. Arroyo, Polymer, 39, 6173 (1998)
19 R. Verma, V. Velikov, R. G. Kander, H. Marand, B. Chu, and B. S. Hsiao, Polymer, 37, 5357 (1996)
20 W. Weng, G. Chen, and D. Wu, Polymer, 44, 8119 (2003)   DOI   ScienceOn
21 C. Fougnies, P. Damman, M. Dosiere, and M. H. J. Koch, Macromolecules, 30, 1392 (1997)
22 S. Z. D. Cheng and B. Wunderlich, Macromolecules, 21, 789 (1988)
23 M. Run, S. Wu, D. Zhang, and G. Wu, Polymer, 46, 5308 (2005)   DOI   ScienceOn
24 J. H. Chang, S. J. Kim, Y. L. Joo, and S. S. Im, Polymer, 24, 919 (2004)
25 J. D. Hoffman and J. J. Weeks, J. Res. Nat. Bur. Stand, 66A, 13 (1962)
26 W. D. Lee, E. S. Yoo, and S. S. Im, Polymer, 44, 6617 (2003)   DOI   ScienceOn
27 H. L. Frisch, Y. Xue, and S. Maaref, Macromol. Symp., 106, 147 (1996)
28 T. M. Wu and C. Y. Liu, Polymer, 46, 5621 (2005)   DOI   ScienceOn
29 B. S. Hsiao, K. H. Gardner, D. Q. Wu, and B. Chu, Polymer, 34, 3986 (1993)
30 M. J. Avrami, Chem. Phys., 8, 212 (1940)
31 W. G. Hahm, H. S. Myung, and S. S. Im, Macromol. Res., 12, 85 (2004)   DOI
32 H. Pehlivan, D. Balkose, S. Ulku, and F. Tihminlioglu, Compos. Sci. Technol., 65, 2049 (2005)   DOI   ScienceOn
33 F. Ozmihcl, D. Balkose, and S. Ulku, J. Appl. Polym. Sci., 82, 2913 (2001)   DOI   ScienceOn
34 C. G. Wu and T. Bein, Science, 264, 1757 (1994)   DOI
35 H. L. Frisch and J. E. Mark, Chem. Mater., 8, 1735 (1996)
36 I. Y. Phang, K. Pramoda, T. Liu, and C. He, Polym. Int., 53, 1282 (2004)   DOI   ScienceOn
37 W. D. Lee and S. S. Im, J. Polym. Sci.; Part B: Polym. Phys., 45, 28 (2007)   DOI   ScienceOn
38 R. de Daubeny, C. W. Bunn, and C. J. Brown, Proc. Roy. Soc. (London), A226, 531 (1954)
39 R. Sareen and S. K. Gupta, J. Appl. Polym. Sci., 58, 2357 (1994)