Browse > Article

Mechanical and Thermal Behavior of Polyamide-6/Clay Nanocomposite Using Continuum-based Micromechanical Modeling  

Weon, Jong-Il (Reliability Assessment Center of Chemical Materials, Korea Research Institute of Chemical Technology)
Publication Information
Macromolecular Research / v.17, no.10, 2009 , pp. 797-806 More about this Journal
Abstract
The mechanical and thermal behaviors of polyamide-6/clay nanocomposites were studied using the continuum-based, micromechanical models such as Mori-Tanaka, Halpin-Tsai and shear lag. Mechanic-based model prediction provides a better understanding regarding the dependence of the nanocomposites' reinforcement efficiency on conventional filler structural parameters such as filler aspect ratio ($\alpha$), filler orientation (S), filler weight fraction (${\Psi}_f$), and filler/matrix stiffness ratio ($E_f/E_m$). For an intercalated and exfoliated nanocomposite, an effective, filler-based, micromechanical model that includes effective filler structural parameters, the number of platelets per stack (n) and the silicate inter-layer spacing ($d_{001}$), is proposed to describe the mesoscopic intercalated filler and the nanoscopic exfoliated filler. The proposed model nicely captures the experimental modulus behaviors for both intercalated and exfoliated nanocomposites. In addition, the model prediction of the heat distortion temperature is examined for nanocomposites with different filler aspect ratio. The predicted heat distortion temperature appears to be reasonable compared to the heat distortion temperature obtained by experimental tests. Based on both the experimental results and model prediction, the reinforcement efficiency and heat resistance of the polyamide-6/clay nanocomposites definitely depend on both conventional (${\alpha},\;S,\;{\Psi}_f,\;E_f/E_m$) and effective (n, $d_{001}$) filler structural parameters.
Keywords
micromechanical model; heat distortion temperature; polyamide-6/clay nanocomposite; filler structural parameters;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 J. I. Weon and H. J. Sue, Polymer, 46, 6325 (2005)   DOI   ScienceOn
2 H. J. Sue, K. T. Gam, N. Bestaoui, N. Spurr, and A. Clearfield, Chem. Mater., 16, 242 (2004)   DOI   ScienceOn
3 T. Y. Hwang, J. W. Lee, S. M. Lee, and G. J. Nam, Macromol. Res., 17, 121 (2009)   DOI
4 M. Kawasumi, M. Kohzaki, Y. Kojima, A. Okada, and O. Kamigaito, US Patent 4810734 (1989)
5 X. Fu and S. Qutubuddin, Polymer, 42, 807 (2001)   DOI   ScienceOn
6 T. D. Fornes and D. R. Paul, Polymer, 44, 4993 (2003)   DOI   ScienceOn
7 N. Sheng, M. C. Boyce, D. M. Parks, G. C. Rutledge, J. I. Abes, and R. E. Cohen, Polymer, 45, 487 (2004)   DOI   ScienceOn
8 T. D. Fornes, P. J. Yoon, H. Keskkula, and D. R. Paul, Polymer, 42, 9929 (2001)   DOI   ScienceOn
9 J. E. Ashton, J. C. Halpin, and P. H. Petit, Primer on Composite Materials: Analysis, Technomic, Westport, 1969
10 C. L. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999)   DOI   ScienceOn
11 J. D. Eshelby, Proc. R. Soc. A, 241, 376 (1957)   DOI
12 J. I. Weon, Z. Y. Xia, and H. J. Sue, J. Polym. Sci. Part B: Polym. Phys., 43, 3555 (2005)   DOI   ScienceOn
13 J. I. Weon, T. S. Creasy, A. J. Hsieh, and H. J. Sue, Polym. Eng. Sci., 45, 314 (2005)   DOI   ScienceOn
14 H. S. Jin, J. H. Chang, and J. C. Kim, Macromol. Res., 16, 503 (2008)   DOI
15 D. R. Paul and C. B. Bucknall, Polymer Blends, Wiley, New York, 2000
16 M. van Es, F. Xiqiao, J. van Turnhout, and van der Giessen E, Specialty Polymer Additives: Principles and Applications, S. Al-Malaika and A. W. Golovoy, Eds., Blackwell Science, CA Malden, MA, 2001, chapter 21
17 H. L. Cox, Br. J. Appl. Phys., 3, 72 (1952)
18 T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, Wiley, New York, 2000
19 A. Okada, Y. Fukushima, M. Kawasumi, S. Inagaki, A. Usuk, S. Sugiyami, T. Kurauchi, and O. Kamigaito, US Patent 4739007 (1988)
20 T. S. Creasy and Y. S. Kang, J. Thermo. Comp. Mat., 17, 205 (2004)   DOI   ScienceOn
21 S. Xie, S. Zhang, F. Wang, H. Liu, and M. Yang, Polym. Eng. Sci., 45, 1247 (2005)   DOI   ScienceOn
22 D. Adams and D. Doner, J. Compos. Mater., 1, 152 (1967)   DOI
23 Y. Wang, L. Zhang, C. Tang, and D. Yu, J. Appl. Polym. Sci., 78, 1878 (2000)
24 R. Hill, Proc. Phys. Soc. A, 65, 349 (1952)   DOI   ScienceOn
25 A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993)
26 T. D. Fornes, Polyamide-layered Silicate Nanocomposites by Melt Processing, PhD Dissertation, University of Texas at Austin (2003)
27 D. Hull and T. W. Clyne, An Introduction to Composite Materials, 2nd ed., Cambridge University Press, New York, 1996
28 P. D. Shepherd, F. J. Golemba, and F. W. Maine, Adv. Chem. Ser., 134, 41 (1974)   DOI
29 G. M. Kim, D. H. Lee, B. Hoffmann, J. Kressler, and G. St\ddot{o}ppelmann, Polymer, 42, 1095 (2000)   DOI   ScienceOn
30 J. C. Halpin and J. L. Kardos, Polym. Eng. Sci., 16, 344 (1976)   DOI   ScienceOn
31 O. L. Manevitch and G. C. Rutledge, J. Phys. Chem. B, 108, 1428 (2003)   DOI   ScienceOn
32 J. C. Halpin, J. Compos. Mater., 3, 732 (1969)
33 G. P. Tandon and G. J. Weng, Polym. Compos., 5, 327 (1984)   DOI   ScienceOn
34 H. van Olphen, An Introduction to Clay Colloid Chemistry, for Clay Technologists, Geologists, and Soil Scientists, 2nd ed., Wiley, New York, 1977
35 M. Choi, B. Lim, and J. Jang, Macromol. Res., 16, 200 (2008)   DOI
36 T. Mori and K. Tanaka, Acta. Metall. Mater., 21, 571 (1973)   DOI   ScienceOn
37 R. Hill, J. Mech. Phys. Solids, 13, 213 (1965)   DOI   ScienceOn