• Title/Summary/Keyword: Polymer membranes

Search Result 760, Processing Time 0.026 seconds

Preparation and Properties of SEBS (Styrene Ethylene Butadiene Styrene Copolymer)-Clay Hybrid Gas Barrier Membranes (Gas Barrier성 SEBS (Styrene Ethylene Butadiene Styrene Copolymer)-Clay 하이브리드 막의 제조 및 물성)

  • Nam Sang Yong;Yeom Bong Yeol;Min Byoung Ryul;Kim Young Jin
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.62-69
    • /
    • 2005
  • SEBS-clay hybrid membranes were prepared by melt intercalation method with internal mixer. In the hybrid, the amount of clay content was fixed to 5 phr. MMT was intercalated or exfoliated by the ionomer and it was confirmed by X-ray diffraction method. D-spacing of the characteristic peak from MMT plate in SAXD was moved and diminished. Gas permeability, mechanical properties and thermal properties of the SEBS-clay hybrid membranes were investigated. Gas permeability through the SEBS-clay hybrid membranes decreased due to increased tortuosity made by intercalation of clay in SEBS.

Recent Progress of Membrane Technology and its New Application for Water Treatment

  • Hiroyuki, Yamamura;Yoshinari, Fusaoka;Masaru, Kurihara
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.81-94
    • /
    • 1998
  • Nowadays, membrane separation such as reverse osmosis (RO) and ultrafiltration (UF) play an important role in the industrial separation technology. Among desalination technologies available today, reverse osmosis is usually the most economical process for wide range of water salinity. Main applications include production of high purity water, desalination of seawater and brackish water for a drinking water supply, treatment of waste water for environmental protection, and recovery of precious materials from industrial waste water. In this paper, we will mention membrane performance and these practical use focused on reverse osmosis membranes and ultrafiltration membranes recently developed by Toray.

  • PDF

Influence of ionic liquid structures on polyimide-based gel polymer electrolytes for high-safety lithium batteries

  • Kim, Jae-Kwang
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.168-172
    • /
    • 2018
  • This study first investigates the effect of the choice of cation on three different ionic-liquid-based gel polymer electrolytes (ILPEs) with polyimide membranes. The preparation of three ILPEs based on electrospun membranes of PI and incorporating a room-temperature ionic liquid, 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide complexed with lithium bis(trifluoromethylsulfonyl)imide, is described. ILPE-EMImTFSI has an ionic conductivity as high as $5.3{\times}10^{-3}S\;cm^{-1}$ at $30^{\circ}C$. Furthermore, it shows higher thermal stability and electrochemical oxidation stability compared to the other two ILPEs because of its stronger bonds. These results indicate that polyimide-based ILPE-EMImTFSI is a good candidate for use in high-safety rechargeable lithium metal batteries.

Preparation and Characterization of Polysulfone Substrate for Reinforced Composite Membrane Fuel Cell Membrane (연료전지 전해질 복합막 제조를 위한 폴리설폰계 지지체의 제조와 물성)

  • Nam, Sang-Yong;Kim, Deuk-Ju;Hwang, Rae-Young;Kim, Hyoung-Juhn
    • Membrane Journal
    • /
    • v.19 no.1
    • /
    • pp.63-71
    • /
    • 2009
  • In this study, polysulfone which has excellent mechanical and thermal stability with low cost was used for preparing a non-conducting polymer matrix as a reinforced composite membrane for fuel cell application. The membranes were prepared by phase separation method. Polymer concentration and retention time were controlled to investigate the effects on the membrane morphology. The resaltant membranes showed all sponge-like structure independent of polymer concentration. The mechanical and thermal stability were improved with increasing polymer concentration in contrast to the membrane porosity. As a result, the membranes prepared with the retention time for 2 mins using 20 wt% of polymer solution was suitable for a fuel cell compositite membrane providing optimum properties such as approximately 80% of high porosity, 1.3 MPa of tensile strength, and less than 1% of thermal shrinkage both machine and transverse direction.

Effect of Polymer Structure on Membrane Morphology by Addition of 2-butoxyethanol (2-butoxyethanol 첨가에 따른 고분자 구조가 분리막 구조에 미치는 영향)

  • Son, Ye-Ji;Kim, No-Won
    • Membrane Journal
    • /
    • v.21 no.4
    • /
    • pp.377-388
    • /
    • 2011
  • Flat sheet microfiltration membranes were prepared with polysulfone (PSF), polyethersulfone (PES), and polyphenylsulfone (PPS) by an immersion precipitation phase inversion method. In this method, dimethyl formamide (DMF) and polyvinylpyrrolidone (PVP) were used as a solvent and a wetting polymer additive, respectively. 2-butoxyethanol (BE) was used as a nonsolvent additive catalyst to form pore. The morphology of membranes was investigated by scanning electron microscopy and micropermporometer. The permeability of the membranes was evaluated with the flux of pure water. When the BE was added, the pore size of membranes became larger than blank membranes. The changes in the morphology of membrane due to the BE addition depend on polymer structure. All membranes have similar mean pore size and porosity. The mean pore sizes of PSF, PES, and PPS membranes were 0.282, 0.330 $0.308{\mu}m$, respectively. The porosities of PSF, PES and PPS membranes were 68.5, 66.1, 66.4%, respectively. However, the PPS membrane showed higher pore density on surface and narrower pore size distribution than PSF or PES membrane does. As a result, the pure water flux of PPS membrane ($357L/m^2\;hr$) was higher than that of PSF ($196L/m^2\;hr$) or PES membrane ($214L/m^2\;hr$).

Highly Sulfonated Poly(Arylene Biphenylsulfone Ketone) Block Copolymers Prepared via Post-Sulfonation for Proton Conducting Electrolyte Membranes

  • Lee, Kyu Ha;Chu, Ji Young;Kim, Ae Rhan;Nahm, Kee Suk;Yoo, Dong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1763-1770
    • /
    • 2013
  • A series of the block copolymers were successfully synthesized from post-sulfonated hydrophilic and hydrophobic macromers via three-step copolymerization. The degrees of sulfonation (DS) of the copolymers (10%, 30%, or 50%) were controlled by changing the molar ratio of the hydrophilic and hydrophobic parts. The resulting block copolymers were characterized by $^1H$ NMR and other technologies. The membranes were successfully cast using dimethyl sulfoxide (DMSO) solution at $100^{\circ}C$. The copolymers were characterized to confirm chemical structure by $^1H$ NMR and FT-IR. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated that all sulfonated block copolymers exhibited good thermal stability with an initial weight loss at temperatures above $240^{\circ}C$. The membranes showed acceptable ion exchange capacity (IEC) and water uptake values in accordance with DS. The maximum proton conductivity was 184 mS $cm^{-1}$ in block copolymer-50 at $60^{\circ}C$ and 100% relative humidity, while the conductivity of Nifion-115 was 160 mS $cm^{-1}$ under the same measurement conditions. AFM images of the block copolymer membranes showed well separated the hydrophilic and hydrophobic domains. From the observed results it is that the prepared block membranes can be considered as suitable polymer electrolyte membranes for the application of polymer electrolyte membrane fuel cells (PEMFC).

Analysis of Facilitated Olefin Transport Through Polymer Electrolyte Membranes Containing Silver Salts (은염을 포함하는 고분자 전해질 막을 통한 올레핀 촉진수송의 해석)

  • Yong Soo Kang;Dongkyun Ko;Jong Hak Kim;Sung Taik Chung
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.239-245
    • /
    • 2003
  • The origin of large difference of selectivity of $C_3H_6$ over $C_3H_8$ between pure gas and mixed gas through silver polymer electrolyte membranes is investigated. Firstly, the effect of feed condition on the permeance of mixture gas ($C_3H_6/C_3H^8$) and the separation performance is examined. Upon decrease of the $C_3\;H_6$ concentration, the $C_3H_6$ permeance decreased whereas the permeance of $C_3H_8$ increased, resulting in the decrease of the selectivity of $C_3H_6/C_3H_8/.$ This result is ascribed to the $C_3H_6$-induced plasticization of membranes. Experimental results were validated by means of mathematical modeling, where pressure independent permeabilities were used.

Pervaporation of Water/ethanol Mixtures Using PVA Membranes Crosslinked with Poly (styrene-maleic anhydride): Study on the Separation Behavior (Poly (styrene-maleic anhydride)로 가교된 Poly (vinyl alcohol)막을 이용한 물/에탄올 수용액의 투과증발: 분리거동에 관한 연구)

  • Kim, Sang-Gyun;Lim, Gyun-Taek;Park, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.469-474
    • /
    • 1998
  • Poly (vinyl alcohol) (PVA) membranes crosslinked with poly (styrene-co-maleic anhydride) (PSMAn) have been prepared by the solution method. To investigate the separation behavior of the crosslinked PVA/PSMAn membranes in the pervaporation process, the selective sorption experiment and swelling measurements of the membranes in ethanol-water mixtures of 30~90 wt % ethanol contents were conducted with equipment that was able to measure the concentration and amount of the liquid absorbed in the membranes. The membranes prepared in this study exhibited good selectivity toward water component in sorption and permeation. Also, in the feed containing ethanol more than 50 wt %, the permeation selectivity of the membrane showed better correlation with the sorption selectivity than that with the swelling ratio changing toward the crosslinking content. This behavior was consistence with a solution-diffusion model correlating permeation and sorption selectivity, and led to the conclusion that the permeation selectivity was determined by sorption step rather than by diffusion step in the membrane.

  • PDF

Unusual Facilitated Olefin Transport through Polymethacrylate/Silver Salt Complexes

  • Kim, Jong-Hak;Joo, Seung-Hwan;Kim, Chang-Kon;Kang, Yong-Soo;Jongok Won
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.375-381
    • /
    • 2003
  • Silver salt complex membranes with glassy poly(methyl methacrylate) (PMMA) unexpectedly showed higher propylene permeance than those with rubbery poly(butyl methacrylate) (PBMA) where as neat PMMA is much less permeable to propylene than that of neat PBMA. Such unusual facilitated olefin transport has been systematically investigated by changing the side chain length of polymethacrylates (PMAs) from methyl, ethyl to butyl. The ab initio calculation showed almost the same electron densities of the carbonyl oxygens in the three PMAs, expecting very similar intensity of the interaction between carbonyl oxygen and silver ion. However, the interaction intensity decreases with the length of the alkyl side chain: PMMA > PEMA > PBMA according to wide angle X-ray scattering and FT-Raman spectroscopy. The difference in the interaction intensity may arise from the difference in the hydrophilicity of the three PMAs, as confirmed by the contact angle of water, which determines the concentrations of the ionic constituents of silver salts: free ion, contact ion pair and higher order ionic aggregate. However, propylene solubilities and facilitated propylene transport vary with the side chain length significantly even at the same concentration of the free ion, the most active olefin carrier, suggesting possible difference in the prohibition of the molecular access of propylene to silver ion by the side chains: the steric hindrance. Therefore, it may be concluded that both the hydrophilicity and the steric hindrance associated with the side chain length in the three PMAs are of pivotal importance in determining facilitated olefin transport through polymer/silver salt complex membranes.

Development of Pore-Filled Anion-Exchange Membranes for High Performance Reverse Electrodialysis (고성능 역전기투석을 위한 세공충진 음이온교환막의 개발)

  • Kim, Do-Hyeong;Song, Hyeon-Bee;Yoon, Kyungseok;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.336-347
    • /
    • 2022
  • Reverse electrodialysis (RED) is one of the promising eco-friendly renewable energy technologies which can generate electricity from the concentration difference between seawater and freshwater by using ion-exchange membranes as a diaphragm. The ion-exchange membrane is a key component that determines the performance of RED, and must satisfy requirements such as low electrical resistance, high permselectivity, excellent durability, and low manufacturing cost. In this study, pore-filled anion-exchange membranes were fabricated using porous polymer substrates having various thicknesses and porosity, and the effects of ion-exchange polymer composition and membrane thickness on the power generation performance of RED were investigated. When the electrical resistance of the ion-exchange membrane is sufficiently low, it can be confirmed that the RED power generation performance is mainly influenced by the apparent permselectivity of the membrane. In addition, it was confirmed that the apparent permselectivity of the membranes can be improved through IEC, crosslinking degree, membrane thickness, surface modification, etc., and the optimum condition must be found in consideration of the trade-off relationship with electrical resistance.