Unusual Facilitated Olefin Transport through Polymethacrylate/Silver Salt Complexes

  • Kim, Jong-Hak (Center for Facilitated Transport Membranes, Korea Institute of Science and Technology) ;
  • Joo, Seung-Hwan (Center for Facilitated Transport Membranes, Korea Institute of Science and Technology) ;
  • Kim, Chang-Kon (Center for Facilitated Transport Membranes, Korea Institute of Science and Technology) ;
  • Kang, Yong-Soo (Center for Facilitated Transport Membranes, Korea Institute of Science and Technology) ;
  • Jongok Won (Department of Applied Chemistry, Sejong University)
  • Published : 2003.10.01

Abstract

Silver salt complex membranes with glassy poly(methyl methacrylate) (PMMA) unexpectedly showed higher propylene permeance than those with rubbery poly(butyl methacrylate) (PBMA) where as neat PMMA is much less permeable to propylene than that of neat PBMA. Such unusual facilitated olefin transport has been systematically investigated by changing the side chain length of polymethacrylates (PMAs) from methyl, ethyl to butyl. The ab initio calculation showed almost the same electron densities of the carbonyl oxygens in the three PMAs, expecting very similar intensity of the interaction between carbonyl oxygen and silver ion. However, the interaction intensity decreases with the length of the alkyl side chain: PMMA > PEMA > PBMA according to wide angle X-ray scattering and FT-Raman spectroscopy. The difference in the interaction intensity may arise from the difference in the hydrophilicity of the three PMAs, as confirmed by the contact angle of water, which determines the concentrations of the ionic constituents of silver salts: free ion, contact ion pair and higher order ionic aggregate. However, propylene solubilities and facilitated propylene transport vary with the side chain length significantly even at the same concentration of the free ion, the most active olefin carrier, suggesting possible difference in the prohibition of the molecular access of propylene to silver ion by the side chains: the steric hindrance. Therefore, it may be concluded that both the hydrophilicity and the steric hindrance associated with the side chain length in the three PMAs are of pivotal importance in determining facilitated olefin transport through polymer/silver salt complex membranes.

Keywords

References

  1. J. Chem. Phys. v.108 A.Ferry;G.Oradd;P.Jacobsson https://doi.org/10.1063/1.476163
  2. Korea Polym. J. v.9 S.S.Bae;N.J.Jo
  3. Korea Polym. J. v.9 C.R.Lee;S.H.Hyun;S.K.Lee;W.S.Kim;S.I.Moon;B.S.Jin
  4. Adv. Mater. v.12 S.U.Hong;J.H.Jin;J.Won;Y.S.Kang https://doi.org/10.1002/1521-4095(200006)12:13<968::AID-ADMA968>3.0.CO;2-W
  5. Macromolecules v.34 J.H.Kim;B.R.Min;C.K.Kim;J.Won;Y.S.Kang https://doi.org/10.1021/ma0020032
  6. J. Phys. Chem. B. v.106 J.H.Kim;B.R.Min;C.K.Kim;J.Won;Y.S.Kang https://doi.org/10.1021/jp010481o
  7. Chem. Eur. J. v.8 J.H.Kim;B.R.Min;J.Won;Y.S.Kang https://doi.org/10.1002/1521-3765(20020201)8:3<650::AID-CHEM650>3.0.CO;2-X
  8. Macromolecules v.35 J.H.Kim;B.R.Min;C.K.Kim;J.Won;Y.S.Kang https://doi.org/10.1021/ma020179t
  9. Macromolecules v.36 J.H.Kim;B.R.Min;J.Won;S.H.Joo;H.S.Kim.Y.S.Kang https://doi.org/10.1021/ma034314t
  10. Chem. Eur. J. v.7 J.H.Ryu;H.Lee;Y.J.Kim;Y.S.Kang;H.S.Kim https://doi.org/10.1002/1521-3765(20010401)7:7<1525::AID-CHEM1525>3.0.CO;2-U
  11. J. Polym. Sci., B: Polym. Phys. v.40 J.H.Kim;B.R.Min;C.K.Kim;J.Won;Y.S.Kang https://doi.org/10.1002/polb.10241
  12. Chem. Commun. J.H.Kim;B.R.Min;K.B.Lee;J.Won;Y.S.Kang
  13. J. Membr. Sci. v.212 J.H.Kim;B.R.Min;H.S.Kim;J.Won;Y.S.Kang https://doi.org/10.1016/S0376-7388(02)00451-9
  14. Macromolecules v.36 J.H.Kim;B.R.Min;J.Won;Y.S.Kang https://doi.org/10.1021/ma0340210
  15. U.S.Patent 5,670,051 I.Pinnau;L.G.Toy;C.Casillas
  16. J. Membr. Sci. v.182 S.Sunderrajan;B.D.Freeman;C.K.Hall;I.Pinnau https://doi.org/10.1016/S0376-7388(00)00569-X
  17. Macromol. Res. v.10 J.Won;Y.Yoon;Y.S.Kang https://doi.org/10.1007/BF03218294
  18. Korea Polym. J. v.8 J.M.Hong;Y.S.Kang
  19. J. Phys. Chem. A. v.105 C.K.Kim;C.K.Kim;B.S.Lee;J.Won;H.S.Kim;Y.S.Kang https://doi.org/10.1021/jp011338y
  20. J. Chem. Phys. v.98 A.D.Becke https://doi.org/10.1063/1.464913
  21. Phys. Rev. v.B37 C.Lee;W.Yang;R.G.Parr
  22. Chem. Phys. Lett. v.157 B.Miehlich;A.Savin;H.Stoll;H.Preuss https://doi.org/10.1016/0009-2614(89)87234-3
  23. Abinitio Molecular Orbital Theory W.J.Hehre;L.Radom;P.V.R.Schleyer;J.A.Pople
  24. Marcomolecules v.34 S.Choi;J.H.Kim;Y.S.Kang https://doi.org/10.1021/ma010927z
  25. Polymer v.25 G.R.Mitchell;A.H.Windle https://doi.org/10.1016/0032-3861(84)90073-9
  26. J. Polym. Sci., B: Polym. Phys. v.31 M. Aguilar-Vega;D.R.Paul https://doi.org/10.1002/polb.1993.090311114
  27. Polymer v.22 R.Lovell;A.Windle https://doi.org/10.1016/0032-3861(81)90195-6
  28. Macromolecules v.33 J.H.Jin;S.U.Hong;J.Won;Y.S.Kang https://doi.org/10.1021/ma000082b
  29. J. Chem. Phys. v.94 S.Schantz https://doi.org/10.1063/1.460418
  30. Polymer v.33 J.Manning;R.Frech https://doi.org/10.1016/0032-3861(92)91108-E
  31. Electrochim. Acta v.40 A.Ferry;P.Jacobsson;L.M.Torell https://doi.org/10.1016/0013-4686(95)00196-L
  32. Electrochim. Acta v.43 S.Chintapalli;R.Frech https://doi.org/10.1016/S0013-4686(97)10074-3
  33. J. Chem. Phys. v.92 M.Kakihana;S.Sohantz;L.M.Torell https://doi.org/10.1063/1.458351