• Title/Summary/Keyword: Polymer membrane

Search Result 1,526, Processing Time 0.025 seconds

Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance (리튬 금속 전극상 고분자/무기물 나노복합막 형성: 리튬층의 효과적 표면성장 제어 및 전기화학적 특성 향상)

  • Jeong, Yohan;Seok, Dohyeong;Lee, Sanghyun;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Polymer/inorganic composites were used as a protective layer of lihitum metal electrode for effective suppression of lithium dendrite. PVDF-HFP was used as an polymer material and TiO2 nanoparticle was used as an inorganic material. PVDF-HFP is a highly flexible polymer that acts as a matrix of inorganic materials while TiO2 nanoparticle improves the mechanical strength and ion conductivity of the protective layer. The as-synthesized protective hybrid membrane exhibited good dispersion of TiO2 in the PVDF-HFP matrix by SEM, AFM and XRD analyses. Furthermore, the electrochemical analysis showed that the polymer-inorganic composite retained high coulombic efficiency of 80% and low overpotential, less than 20 mV until the 100th cycles due to the improved mechanical properties and ion conductivity in comparison to the control sample (untreated and PVDF-HFP polymers/Cu).

Electrospun Poly(Ether Sulfone) Membranes Impregnated with Nafion for High-Temperature Polymer Electrolyte Membrane Fuel Cells

  • Lee, Hong Yeon;Hwang, Hyung Kwon;Lee, Jin Goo;Jeon, Yukwon;Park, Dae-Hwan;Kim, Jong Hak;Shul, Yong-Gun
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.9-13
    • /
    • 2016
  • Electrospun poly(ether sulfone) (PES) membrane impregnated with Nafion (PES-N) have been developed for high-temperature polymer-electrolyte membrane fuel cell (HT-PEMFC). The PES-N obtains highly thermal stability up to $430^{\circ}C$, which is higher than that of the commercial Nafion 212. The PES-N membrane shows a good proton conductivity of about $10^{-2}S\;cm^{-1}$ in a temperature range from $75^{\circ}C$ to $120^{\circ}C$. The membrane-electrode assembly (MEA) with the PES-N membrane exhibits a current density of $1.697A\;cm^{-2}$ at $75^{\circ}C$, and $0.813A\;cm^{-2}$ at $110^{\circ}C$ when the applied voltage is 0.6 V, whereas the MEA with the Nafion 212 membrane shows the current density of $0.647Acm^{-2}$ at $110^{\circ}C$. The results suggest that the PES-N can be a good candidate for a polymer electrolyte membrane of the HT-PEMFC.

The roles of polyethersulfone and polyethylene glycol additive on nanofiltration of dyes and membrane morphologies

  • Hassan, Abdul Rahman;Rozali, Sabariah;Safari, Nurul Hannan Mohd;Besar, Badrul Haswan
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.316-322
    • /
    • 2018
  • In this study, the effects of polymer concentration and additive in the formation of asymmetric nanofiltration (NF) membrane were evaluated. The membrane fabrication was carried out via dry/wet phase inversion technique. A new formulation of dope solution with polymer concentration ranging between 17 wt% to 21 wt% and the present of additive was developed. The results show that the permeate flux gradually decreases as polymer concentration increased, until $2.5969L/m^2h$ and increased the rejection up to 98.7%. Addition of additive, polyethylene glycol 600 increased dyes rejection up to 99.8% and decreased the permeate flux to $3.6501L/m^2h$. This indicates that the addition of polyethylene glycol additive led towards better membrane performance. The morphological characteristics of NF membrane were analysed using a Scanning Electron Microscopy.

Preparation and Characterization of the Polymeric Antioxidant for Improving the Chemical Durability of Polymer Electrolyte Membranes (고분자 전해질 막의 화학적 내구성 향상을 위한 고분자형 산화방지제 제조 및 특성 분석)

  • LEE, BYEOL-NIM;KODIR, ABDUL;LEE, HYEJIN;SHIN, DONGWON;BAE, BYUNGCHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.308-314
    • /
    • 2021
  • Chemical durability issue in polymer electrolyte membranes has been a challenge for the commercialization of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we proposed a manufacturing method of Nafion composite membrane containing a stable polyimide antioxidant to improve the chemical durability of the membrane. The thermal casting of the Nafion solution with poly (amic acid) induced polyimide reaction. We evaluated proton conductivity, oxidative stability with ex-situ Fenton's test, and fluoride ion emission to analyze the effect of polyimide antioxidants. We confirmed that incorporating the polyimide antioxidant improves the chemical durability of the Nafion membrane while maintaining inherent proton conductivity.

Ionic Cluster Mimic Membranes Using Ionized Cyclodextrin

  • Won Jong-Ok;Yoo Ji-Young;Kang Moon-Sung;Kang Yong-Soo
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.449-455
    • /
    • 2006
  • Ionic cluster mimic, polymer electrolyte membranes were prepared using polymer composites of crosslinked poly(vinyl alcohol) (PVA) with sulfated-${\beta}$-cyclodextrins (${\beta}-CDSO_3H$) or phosphated-${\beta}$-cyclodextrins (${\beta}-CDPO(OH)_2$). When Nafion, developed for a fuel cell using low temperature, polymer electrolyte membranes, is used in a direct methanol fuel cell, it has a methanol crossover problem. The ionic inverted micellar structure formed by micro-segregation in Nafion, known as ionic cluster, is distorted in methanol aqueous solution, resulting in the significant transport of methanol through the membrane. While the ionic structure formed by the ionic sites in either ${\beta}-CDSO_3H$ or ${\beta}-CDPO(OH)_2$ in this composite membrane is maintained in methanol solution, it is expected to reduce methanol transport. Proton conductivity was found to increase in PVA membranes upon addition of ionized cyclodextrins. Methanol permeability through the PVA composite membrane containing cyclodextrins was lower than that of Nafion. It is thus concluded that the structure and fixation of ionic clusters are significant barriers to methanol crossover in direct methanol fuel cells.

Degradation of Polymer Electrolyte Membrane under Low Current/Low Humidity Conditions (저전류/저가습 조건에서 고분자전해질 막 열화)

  • Kim, Tae-Hee;Lee, Jung-Hun;Lee, Ho;Lim, Tae-Won;Park, Kwon-Pil
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.157-163
    • /
    • 2007
  • During PEMFC operation, low current and low humidity conditions accelerate the degradation of perfluorosulfonic acid membrane. But, there have been no studies that clearly explain why these conditions accelerate the membrane degradation. In this study, the hydrogen permeability through the membrane, I-V polarization of MEA, fluoride emission rate(FER) in effluent water were measured during cell operation under low current densities and low relative humidity(RH). The experimental results were evaluated with oxygen radical mechanism the most commonly known for membrane degradation. It seems that low RH of anode is a good condition for $H{\cdot}$ radical formation on the Pt catalyst and the low current condition accelerates the $H{\cdot}$ to form $HO_2{\cdot}$ radical attacking the polymer membrane.

A Study on the Fabrication of a Membrane Type Micro=Actuator Using IPMC(Ionic Polymer-Metal Composite) for Micro-Pump Application (마이크로 펌프 응용을 위한 이온성 고분자-금속 복합체를 이용한 멤브레인형 마이크로 액추에이터 제작에 관한 연구)

  • 조성환;이승기;김병규;박정호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.298-304
    • /
    • 2003
  • IPMC(Ionic Polymer-Metal Composite) is a highly sensitive actuator that shows a large deformation in presence of low applied voltage. Generally, IPMC can be fabricated by electroless plating of platinum on both sides of a Nafion (perfluorosulfonic acid) film. When a commercial Nafion film is used as a base structure of the IPMC membrane, the micro-pump structure and the IPMC membrane are fabricated separately and then later assembled, which makes the fabrication inefficient. Therefore, fabrication of an IPMC membrane and the micro-pump structure on a single wafer without the need of assembly have been developed. The silicon wafer was partially etched to hold liquid Nafion to be casted and a 60-${\mu}{\textrm}{m}$ thick IPMC membrane was realized. IPMC membranes with various size were fabricated by casting and they showed 4-2${\mu}{\textrm}{m}$ displacements from $4mm{\times}4mm$ , $6mm{\times}6mm$, $8mm{\times}8mm$ membranes at the applied voltage ranging from 2Vp-p to 5Vp-p at 0.5Hz. The displacement of the fabricated IPMC membranes is fairly proportional to the membrane area and the applied voltage.

Evaluation of interaction between organic solutes and a membrane polymer by an inverse HPLC method

  • Kiso, Yoshiaki;Hosogi, Katsuya;Kamimoto, Yuki;Jung, Yong-Jun
    • Membrane and Water Treatment
    • /
    • v.5 no.3
    • /
    • pp.171-182
    • /
    • 2014
  • Organic compounds are adsorbed on RO/NF membranes, and the adsorption may influence the rejection of organic compounds by the membranes. Because almost RO/NF membranes are composite membranes, the results obtained by adsorption experiment with using membrane pieces are unable to avoid the influence by the support membrane. In this work, the interaction between membrane polymer and organic solutes was examined by an inverse HPLC methodology. Poly (m-phenylenetrimesoylate), the constituent of skin layer of RO/NF membranes, was coated on silica gel particles and used as a stationary phase for HPLC. When water was used as a mobile phase, almost hydrophilic aliphatic compounds were not effectively adsorbed on the stationary phase, although hydrophobic compounds were slightly adsorbed. The results indicated that the hydrophilic aliphatic compounds are useful probe solutes to examine the molecular sieving effect of a membrane. When water was used as a mobile phase, the aromatic compounds were strongly retained, and therefore $CH_3CN/H_2O$ (30/70) was used as a mobile phase. It was revealed that the adsorption of aromatic compounds was controlled by stacking between solute and polymer and was hindered by non-planar structure and substituents.