• 제목/요약/키워드: Polymer insulator

검색결과 212건 처리시간 0.034초

배전용 폴리머애자의 섬락고장 (Flashover Failure of Polymer Insulator in Distribution Lines)

  • 한재홍;이병성;김찬영;윤태상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.767-770
    • /
    • 2000
  • This study was investigated for searching a cause of flashover failure of polymer insulator and preparing countermeasures. Hydrophobicity, microstructure and chemical structural change of polymer weathershed were studied by polymer characterization methods. In addition, the electrical properties such as power frequency dry flashover voltage/impulse voltage tests, contamination characteristics were carried out. The hydrophobicity of polymer weathershed was decreased significantly and cracks were observed on the surface. Also, the electrical characteristics did not satisfy the KEPCO specification. The failed polymer insulators showed the more leakage current than 4 years service-aged ones. From the result, it can be concluded that the flashover failure of polymer insulator was attributed to the surface aging and severe contamination.

  • PDF

트래킹 휠과 복합열화시험에 의한 폴리머 애자의 성능 평가 (Performance Evaluation of Polymer Insulator using Tracking Wheel and Multi-Aging Test)

  • 조한구;안명상;한세원;허종철;이운용
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.119-122
    • /
    • 2000
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators for transmission line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage transmission lines. Their advantages are light weight, vandalism resistance and hydrophobicity. Polymer insulators are a relatively new technology, but their expected life is still unknown. Therefore these estimating technique are very important. Their life time is related to weathering and operating condition. Multi-aging test is requested because aging factor is occurred by multi-aging than unique aging. The aging test about polymer insulators have mainly carried out by IEC 61109. This paper presents multi-stress chamber experiments and tracking wheel test to examine the tracking and erosion performance of polymer insulator for transmission. Multi-stress testing is able to demonstrate deficiencies of polymer insulator materials and designs, including the nature of interfaces in insulation design. We have investigated IEC 61109 Annex C (5000h aging test) and CEA tracking wheel test as test methods of artificial accelerated aging. The aging degree of polymer insulator is estimated by leakage current, measurement of hydrophobicity degree, damage conditions of insulator surface, withstand voltage test etc.

  • PDF

경년변화에 따른 송전용 폴리머 현수애자의 트래킹 성능평가 (Tracking Property of Polymer Suspension Insulator for Transmission line with secular variation)

  • 조한구;이운용;이유정;임기조;최인혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.558-559
    • /
    • 2005
  • Recently, polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. In this paper, the tracking property of polymer suspension insulator for power transmission is investigated with CEA tracking wheel test. The diagnosis of insulator sample in tracking test has been analyzed by leakage current, STRI Guide, SEM, FTIR and thermal image.

  • PDF

갓 형상에 따른 폴리머 현수애자의 열화특성 (Performance of Polymer Suspension Insulator with Shed Profile)

  • 조한구;이운용;강성화;임기조;여학규;지원영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.539-542
    • /
    • 2003
  • Recently, the polymer insulators which are being used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination which lead to the well known phenomenon of dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. The shape design of porcelain insulator is formalized but design standard for polymer insulator is no standardized up to now, much research is necessary in real condition. In this paper, the aging property of polymer insulator with shed shape(regular, alternative type) is analyzed through numerical analysis, CEA(canadian electricity association) tracking wheel test and IEC 61109 Annex C.

  • PDF

폴리머 LP애자의 설계해석과 전기적 성능 시험 (The Design Analysis and Electrical Performance Test of Polymer LP Insulator)

  • 이운용;조한구;박상호;송홍준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.399-401
    • /
    • 2000
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators for transmission and distribution line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage(UHV) transmission lines. Their advantages are light weight, vandalism resistance and hydrophobicity. In this paper, polymer line post insulator has been designed and investigated electric field distribution by FEM. Designed LP insulators have been tested as insulator performance test, such as power frequency voltage test, lightning impulse voltage test, artificial pollution test and flexural load test.

  • PDF

송배전용 고분자 애자의 설계와 열화시험 (The Design and Aging Test of Polymer Insulator for Power Transmission and Distribution)

  • 이운용;조한구;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.553-555
    • /
    • 2000
  • Recently polymer insulators are being used for outdoor high voltage applications. Polymer insulators for transmission line have significant advantages over porcelain and glass insulators, especially for ultra-high voltage(UHV) transmission lines. In this paper, the design trend and method polymer insulator are investigated and Aging test method is analysed to know life time of insulator.

  • PDF

계면활성제가 첨가된 염수용액에 따른 폴리머 애자의 트래킹 성능 평가 (Tracking Performance Test of Polymer Insulator with Salt Solution which is added Surface Active Agent)

  • 조한구;한동희;이운용;임기조;최인혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.2
    • /
    • pp.1121-1124
    • /
    • 2004
  • Aging test to estimate life property of polymer insulator is executed through several international standard such as IEC 61109 and CEA tracking wheel test, but is not getting clear conclusion yet. There are two methods in the diagnosis method of polymer insulator such as off-line and on-line. The diagnosis methods in off-line are external condition analysis by the eye, contaminant analysis on surface, surface analysis, pollution withstand voltage test, power frequency flashover voltage test, lightning impulse flashover test, tensile fracture load test and flexural load test. The diagnosis methods in off-line most are the method for virgin and last aged sample. However, the diagnosis method in on-line is method that can be evaluate sample state as progressing continuously aging test in beginning, The diagnosis method in on-line is arranged as following: leakage current measurement, electric field, surface state investigation, thermal image, emitting light measurement and then so. In this paper, the tracking performance of polymer insulator with salt solution which is added surface active agent. The diagnosis of insulator sample has been analyzed by leakage current and visual examination.

  • PDF

계면활성제가 첨가된 염수용액에 따른 폴리머 애자의 트래킹 성능 평가 (Tracking Performance Test of Polymer Insulator with Salt Solution which is added Surface Active Agent)

  • 조한구;이운용;한동희;강성화;최인혁;임기조
    • 한국전기전자재료학회논문지
    • /
    • 제18권1호
    • /
    • pp.62-67
    • /
    • 2005
  • Recently, polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. Aging test to estimate life property of polymer insulator is executed through several international standard such as IEC 61109 and CEA tracking wheel test, but is not getting clear conclusion yet. There are two methods in the diagnosis method of polymer insulator such as off-line and on-line. The diagnosis methods in off-line are external condition analysis by the eye, contaminant analysis on surface, surface analysis, pollution withstand voltage test, power frequency flashover voltage test, lightning impulse flashover test, tensile fracture load test and flexural load test. Polymer material is also investigated it's tracking resistance by adding surface active agent in IEC 587. In this paper, the tracking performance of polymer insulator with salt solution which is added surface active agent. The diagnosis of insulator sample has been analyzed by leakage current and visual examination, STRI guide and thermal image camera.

ESPI를 이용한 자외선조사량에 따른 폴리머애자의 탄성계수 변화 연구 (Elasticity Modulus Change Research of Polymer Ultraviolet Dosage by using ESPI)

  • 김경석;김동수;장호섭;박찬주;장완식;정현철
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.485-490
    • /
    • 2010
  • Recently, environment problems have effects on the electronic equipments. Security problems are presented. For security reasons, it is necessary to study electronic equipments. In this paper, we handle the Elasticity modulus on the polymer insulator by UV irradiation. The types of material are used in this experiment, is the EPDM (Ethylene Propylene Diene Monomer). For increasing the reliability, real material specimens are used. For this study, we used ESPI (Electronic speckle pattern interferometry), UTM (Universal thesting machine) device, Accelerated weathering tester. Through this measurement, we evaluated how much UV irradiation has effect on polymer insulator and how long does it take to change the polymer insulator. Also this paper will give a help in electronic industry and the method of measuring the insulator elasticity modulus of polymer could be utilized in life estimation and replacement time of the products of electronic equipment that is used in real industrial fields.

경년열화에 따른 송전용 폴리머 현수애자의 표면 및 트래킹 성능 (Surface and Tracking Properties of Polymer Suspension Insulator for Power Transmission with secular variation)

  • 조한구;이운용;한세원;한동회;허종철;최인혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.233-236
    • /
    • 2004
  • Recently, the polymer insulators that are used for high voltage applications have some advantages such as light weight, small size, vandalism resistance, hydrophobicity and easy making process. During outdoor service of polymer insulators, the surface of the insulating material is frequently subjected to moisture and contamination that lead to dry band arcing. Their tracking resistance, erosion resistance, end sealing and shed design are very important because dry band arcing causes degradation of polymer surface. The shape design of porcelain insulator is formalized but design standard for polymer insulator is no standardized up to now, much research is necessary in real condition. In this paper, the surface and tracking properties of polymer suspension insulator for power transmission is investigated with ICP-AES, SEM, EDX, tracking wheel test and flashover voltage test. The diagnosis of insulator sample in tracking test hass been analyzed by leakage current STRI Guide and thermal image.

  • PDF