• Title/Summary/Keyword: Polymer grafting

Search Result 181, Processing Time 0.031 seconds

Preparation and Characteristics of P(AN-co-MA) Membrane Imprinted with Lysozyme Molecules (라이소자임 분자각인 P(AN-co-MA) 막의 제조와 특성)

  • Min, Kyoung Won;Yoo, Anna;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • Molecularly imprinted membrane (MIM) is a porous polymer membrane incorporating with the molecular recognizing sites. In this study, the supporting P(AN-co-MA) asymmetric membrane was prepared by nonsolvent induced phase separation (NIPS) method. And then, MIM with lysozyme template sites was prepared using the surface imprinting method on the P(AN-co-MA) asymmetric membrane introducing a photoactive iniferter and then photo-grafting. The P(AN-co-MA) asymmetric membrane was modified with 3-chloropropyltrimethoxysilane and dithiocarbamate as a photoactive iniferter. To prepare a lysozyme imprinted membrane, the modified P(AN-co-MA) membrane was copolymerized with acrylamide as a functional momomer, N,N'-methylene bisacrylamide as a crosslinker and lysozyme as a template in the UV irradiation environment. The lysozyme imprinted MIM was analyzed by using SEM, FT-IR and EDS measurements. Its results confirm that all the P(AN-co-MA) membranes have an asymmetric structure and the iniferter group is successfully introduced on the membrane surface. The process parameters were adjusted to obtain MIM having the excellent lysozyme adsorption. The maximum lysozyme adsorption capacity reaches at 2.7 mg/g, which is 13 times higher than that of the non imprinted membrane (NIM). The permselective membrane filtration experiments of ovalbumin to lysozyme show that the P(AN-co-MA) MIM preferentially bounds a greater amount of lysozyme.

The Graft Polymerization of Acrylic Acid in Vapour Phase onto Poly(ethylene terephthalate) by Cold Plasma Part (I) (저온 Plasma를 이용한 Poly(ethylene terephthalate)에의 Acrylic Acid의 기상 Graft 공중합 반응(I))

  • 천태일;최석철;모상영
    • Textile Coloration and Finishing
    • /
    • v.1 no.1
    • /
    • pp.7-18
    • /
    • 1989
  • The distinguishing characteristic of the glow discharge is that chemical reaction induced by partially ionized gases are limited only to the substrate surface. Most studies have been done on the plasma etching and polymerization. The graft polymerization in vapour phase by cold plasma has been rarely investigated. In this study the system of tub3ar reaction chamber with capacitively coupled electrode of alternative current of 60 Hz was employed for the graft polymerization. The graft polymerization of Acylic Acid(AA) onto the poly (ethylene terephthalate) (PET) was carried out by treatment of PET film and fabric by cold plasma (glow discharge of argon gas), followed by the supply of AA vapour. The graft yield was about 1 wt%. The surface property was determined by contact angle, the surface tension was evaluated by zisman’s plot and equation of surface tension mesurement. The results were as follows: 1. In order to obtain lower contact angle, it was effective to avoid the vicinity of electrodes for a setting position of substrate. 2. Contact angle affected on the monomer pressure and its duration of exposure to the acid vapour. 3. Polymer radical formation was influenced by the changes of the value of current density and plasma treatment time. 4. Total surface tension of plasma grafted PET film increased. With an increase in the carboxylic acid content, the dispersion force decreased, while, the polar force and hydrogen bonding force increased. 5. The contact angle decreased from $75^\circ$ to around $30^\circ$ by plasma grafting. There was no ageing effect on the contact angle after 4 months.

  • PDF

Bone Morphogenic Protein-2 (BMP-2) Immobilized Biodegradable Scaffolds for Bone Tissue Engineering

  • Kim, Sung-Eun;Rha, Hyung-Kyun;Surendran, Sibin;Han, Chang-Whan;Lee, Sang-Cheon;Choi, Hyung-Woo;Choi, Yong-Woo;Lee, Kweon-Haeng;Rhie, Jong-Won;Ahn, Sang-Tae
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.565-572
    • /
    • 2006
  • Recombinant human bone morphogenic protein-2 (rhBMP-2), which is known as one of the major local stimuli for osteogenic differentiation, was immobilized on the surface of hyaluronic acid (HA)-modified poly$(\varepsilon-caprolactone)$ (PCL) (HA-PCL) scaffolds to improve the attachment, proliferation, and differentiation of human bone marrow stem cells (hBMSCs) for bone tissue engineering. The rhBMP-2 proteins were directly immobilized onto the HA-modified PCL scaffolds by the chemical grafting the amine groups of proteins to carboxylic acid groups of HA. The amount of covalently bounded rhBMP-2 was measured to 1.6 pg/mg (rhBMP/HA-PCL scaffold) by using a sandwich enzyme-linked immunosorbant assay. The rhBMP-2 immobilized HA-modified-PCL scaffold exhibited the good colonization, by the newly differentiated osteoblasts, with a statistically significant increase of the rhBMP-2 release and alkaline phosphatase activity as compared with the control groups both PCL and HA-PCL scaffolds. We also found enhanced mineralization and elevated osteocalcin detection for the rhBMP-2 immobilized HA-PCL scaffolds, in vitro.

Microencapsulation of Surface-modified Carbon Black by Miniemulsion Polymerization (미니유화중합법에 의한 표면개질된 카본블랙의 마이크로캡슐화)

  • Jang, Heang Sin;Hong, Jinho;Lee, Jeongwoo;Shim, Sang Eun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.669-675
    • /
    • 2008
  • Carbon black has been widely used in composites, tonor resin, and ink materials. Since carbon black readily agglomerates, it is important to disperse carbon black in real applications. Aiming to improve dispersion stability, carbon black was chemically oxidized to possess hydroxyl groups using a phase transfer catalyst at room temperature. The modified carbon black (CB-OH) was grafted by a silane coupling agent, p-methylacryloxypropyltrimethoxysilane, to carry teminal vinyl groups. The modified carbon black was subsequently used in miniemulsion polymerization to achieve encapsulted core-shell structure. Finally, well-encapsulated carbon black by polymer was obtained in the size range of 100-500 nm. Throughout the polymerization, the effects of surface modification, types of monomers, initiators, and emulsifiers were investigated.

Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-g-Poly(L-lactide-co-$\varepsilon$-caprolactone) Nanofibers

  • Jeong, Sung-In;Lee, Young-Moo;Lee, Joo-Hyeon;Shin, Young-Min;Shin, Heung-Soo;Lim, Youn-Mook;Nho, Young-Chang
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • Biodegradable and elastic poly(L-lactide-co-$\varepsilon$-caprolactone) (PLCL) was electrospun to prepare nanofibers, and N-isopropylacrylamide (NIPAAm) was then grafted onto their surfaces under aqueous conditions using $^{60}Co-{\gamma}$ irradiation. The graft yield increased with increasing irradiation dose from 5 to 10 kGy and the nanofibers showed a greater graft yield compared with the firms. SEM confirmed that the PLCL nanofibers maintained an interconnected pore structure after grafting with NIPAAm. However, overdoses of irradiation led to the excessive formation of homopolymer gels on the surface of thc PLCL nanofibers. The equilibrium swelling and deswelling ratio of the PNIPAAm-g-PLCL nanofibers (prepared with 10 kGy) was the highest among the samples, which was consistent with the graft yield results. The phase-separation characteristics of PNIPAAm in aqueous conditions conferred a unique temperature-responsive swelling behavior of PNIPAAm-g-PLCL nanofibers, showing the ability to absorb a large amount of water at < $32^{\circ}C$, and abrupt collapse when the temperature was increased to $40^{\circ}C$. In accordance with the temperature-dependent changes in swelling behavior, the release rate of indomethacin and FITC-BSA loaded in PNIPAAm-g-PLCL nanofibers by a diffusion-mediated process was regulated by the change in temperature. Both model drugs demonstrated greater release rate at $40^{\circ}C$ relative to that at $25^{\circ}C$. This approach of the temperature-controlled release of drugs from PNIPAAm-g-PLCL nanofibers using gamma-ray irradiation may be used to design drugs and protein delivery carriers in various biomedical applications.

Nanofiber Membrane based Colorimetric Sensor for Mercury (II) Detection: A Review (나노 섬유 멤브레인을 기반으로 한 수은(II) 색변화 검출 센서에 대한 총설)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.241-252
    • /
    • 2021
  • Rapid industrialization with growing population leads to environmental water pollution. Demand in generation of clean water from waste water is ever increasing by scarcity of rain water due to change in weather pattern. Colorimetric detection of heavy metal present in clean water is very simple and effective technique. In this review membrane based colorimetric detection of mercury (II) ions are discussed in details. Membrane such as cellulose, polycaprolactone, chitosan, polysulfone etc., are used as support for metal ion detection. Nanofiber based materials have wide range of applications in energy, environment and biomedical research. Membranes made up of nanofiber consist up plenty of functional groups available in the polymer along with large surface area and high porosity. As a result, it is easy for surface modification and grafting of ligand on the fiber surface enhanced nanoparticles attachment.

Effect of Aluminium Addition to MCM-41 on Catalytic Cracking of an LDPE-LLDPE-EVA Copolymer Mixture (MCM-41을 이용한 LDPE-LLDPE-EVA 공중합체 혼합물의 접촉 열분해 반응에 미치는 Aluminium 첨가 효과)

  • Kim, Min Ji;Jeon, Jong-Ki;Park, Young-Kwon;Ko, Young Soo;Sohn, Jung Min
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.117-123
    • /
    • 2007
  • The effect of aluminium addition to MCM-41 on product yield and carbon number distribution was investigated in the catalytic cracking of a polymer mixture, LDPE, LLDPE, and EVA copolymer, with a composition similar to that found in real agricultural film wastes. Al-MCM-41 catalyst synthesized by post-synthetic grafting method (Al-MCM-41-P) as well as Al-MCM-41 catalyst synthesized by direct sol-gel (Al-MCM-41-D). The catalytic cracking of polymer mixture was carried out in vapor phase contact as well as in liquid phase contact. The amount of acid sites increased with aluminium addition by post method as well as direct method, which was seemed to be due to Lewis acid sites. In liquid phase catalytic cracking, the yield of light hydrocarbon fraction increased with aluminium addition. The effect of aluminium addition on production of $C_5-C_{12}$ hydrocarbons over Al-MCM-41-P catalysts was greater than that over Al-MCM-41-D catalysts. In the case of vapor phase catalytic cracking, the effect of aluminium addition was smaller than that of liquid phase catalytic cracking. The selectivity to $C_{13}-C_{32}$ hydrocarbons was smaller in vapor phase catalytic cracking.

Adhesion Behavior of Chondrocyte and Osteoblast on Surface-Modified Biodegradable PLLA Films and Scaffolds (표면개질된 생분해성 PLLA 필름 및 지지체의 연골세포와 조골세포 점착거동)

  • Choi, Ji-Yeon;Jung, Hyun-Jung;Park, Bang-Ju;Joung, Yoon-Ki;Park, Kwi-Deok;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.357-363
    • /
    • 2012
  • Surface-modified poly(L-lactic acid) (PLLA) films and scaffolds were treated with plasma discharge in oxygen gas and subsequently subjected to $in$ $situ$ grafting of acrylic acid (AA) in order to increase the cell compatibility. The surface of AA-grafted PLLA was converted to hydroxyapatite (HA)-deposited PLLA in stimulated body fluid (SBF). After the samples were immersed in phosphate-buffered saline (PBS), fetal bovine serum (FBS), normal saline, or cell medium, the water contact angles were significantly reduced on the surface of HA-deposited PLLA. Chondrocyte and osteoblast showed a higher attachment and cell proliferation on HA-deposited surfaces and in particular, it was confirmed that chondrocyte was considerably influenced by HA. However, osteoblast showed better cell proliferation on the surfaces immersed in FBS, cell medium or HA-deposited surface. In addition, the cell proliferation in 3D scaffolds was much higher than that on film type, irrespective of chondrocyte and osteoblast. Therefore, such surface-modified PLLAs are expected to be useful as organic-inorganic hybrid scaffolds in the regeneration of cartilage and bone.

Preparation and Properties of Aminated Poly(ethersulfone) Ion-Exchange Membrane by UV Irradiation Method (UV 조사에 의한 아민화 Poly(ethersulfone) 이온교환막의 제조 및 특성)

  • Choi, Kuk-Jong;Hwan, Eui-Hwan;Rhee, Young-Woo;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.70-76
    • /
    • 2008
  • The PES-g-BTCA membrane was synthesized by UV irradiation method and then used to be modified into the PES anion exchange membrane by the amination reaction. Their chemical structures and adsorption properties were investigated. The degree of grafting and amination were increased with increasing the reaction time and had the maximum values of 138% and 1.20 mmol/g at 80 min, respectively. The initial thermal degradation temperature of PES membrane was $400^{\circ}C$. Which was reduced as the surface modification reaction had proceeded. The values of contact angle for PES membrane were decreased from 68.1 to $40.2^{\circ}$ with increasing the extent of amination, the water up-take and ion exchange capacity were also increased with increasing UV irradiation time until 80 min. The average pore size and BET surface area were decreased in order of PES, PES-g-BTCA, and aminated PES ion exchange membrane. Their average pore sizes were 624.8, 359.7, and 138.5 ${\AA}$, and their surface areas were 10.1,9.7 and 1.7 $m^2/g$, respectively.

The Esterification of Oleic Acid Using Acidic Ionic Liquid Catalysts Immobilized on Silica Gel (실리카겔에 고정화된 산성 이온성 액체 촉매를 이용한 올레산의 에스터화 반응연구)

  • Choi, Jae-Hyung;Park, Yong-Beom;Lee, Suk-Hee;Cheon, Jae-Kee;Woo, Hee-Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • Esterification of free fatty acid with methanol to biodiesel was investigated in a batch reactor using various solid acid catalysts, such as polymer cation-exchanged resins with sulfuric acid functional group(Amberlyst-15, Dowex 50Wx8), acidic ionic liquids (ILs)-modified silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-[ASBI][HSO_4]$, $SiO_2-[ASCBI][HSO_4]$) and grafted silica gels respectively with $-SO_3H$ and $-SO_2Cl$ functional group ($SiO_2-R-SO_3H$, $SiO_2-R-SO_2Cl$). The effects of reaction time, temperature, reactant concentration(molar ratio of methanol to oleic acid), and catalyst amount were studied. Allylimidazolium-based ILs on modified silica gels were superior to other tested solid acid catalysts. Especially, the performance of $SiO_2-[ASBI][HSO_4]$ (immobilized by grafting of 3-allyl-1-(4-sulfobutyl)imidazolium hydrogen sulfate on silica gel) was better than that of a widely known Amberlyst-15 catalyst at the same reaction conditions. A high conversion yield of 96% was achieved in the esterification reaction of the simulated cooking oil at 353 K for 2 h. The high catalytic activity of $SiO_2-[ASBI][HSO_4]$ was attributed to the presence of strong Brønsted acid sites from the immobilized functional groups. The catalyst was recovered and the biodiesel product was separated by simple processes such as decantation and filtration.