Bone Morphogenic Protein-2 (BMP-2) Immobilized Biodegradable Scaffolds for Bone Tissue Engineering

  • Kim, Sung-Eun (Neuroscience Genome Research Center, The Catholic University of Korea) ;
  • Rha, Hyung-Kyun (Neuroscience Genome Research Center, The Catholic University of Korea) ;
  • Surendran, Sibin (Dept. of Orthopedic Surgery, Daejeon St. Mary's hospital, The Catholic University of Korea) ;
  • Han, Chang-Whan (Dept. of Orthopedic Surgery, Daejeon St. Mary's hospital, The Catholic University of Korea) ;
  • Lee, Sang-Cheon (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Hyung-Woo (Nanomaterials Application Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Yong-Woo (Dept. of Anesthesiology, St. Mary's hospital, The Catholic University of Korea) ;
  • Lee, Kweon-Haeng (Dept. of Pharmacology, The Catholic University of Korea) ;
  • Rhie, Jong-Won (Dept. of Plastic Surgery, Kangnam St. Mary's Hospital, The Catholic University of Korea) ;
  • Ahn, Sang-Tae (Dept. of Plastic Surgery, Kangnam St. Mary's Hospital, The Catholic University of Korea)
  • 발행 : 2006.10.31

초록

Recombinant human bone morphogenic protein-2 (rhBMP-2), which is known as one of the major local stimuli for osteogenic differentiation, was immobilized on the surface of hyaluronic acid (HA)-modified poly$(\varepsilon-caprolactone)$ (PCL) (HA-PCL) scaffolds to improve the attachment, proliferation, and differentiation of human bone marrow stem cells (hBMSCs) for bone tissue engineering. The rhBMP-2 proteins were directly immobilized onto the HA-modified PCL scaffolds by the chemical grafting the amine groups of proteins to carboxylic acid groups of HA. The amount of covalently bounded rhBMP-2 was measured to 1.6 pg/mg (rhBMP/HA-PCL scaffold) by using a sandwich enzyme-linked immunosorbant assay. The rhBMP-2 immobilized HA-modified-PCL scaffold exhibited the good colonization, by the newly differentiated osteoblasts, with a statistically significant increase of the rhBMP-2 release and alkaline phosphatase activity as compared with the control groups both PCL and HA-PCL scaffolds. We also found enhanced mineralization and elevated osteocalcin detection for the rhBMP-2 immobilized HA-PCL scaffolds, in vitro.

키워드

참고문헌

  1. M. F. Pittenger, A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak, Science, 284, 143 (1999) https://doi.org/10.1126/science.284.5411.143
  2. K. Jung, K. Ahn, and D. Han, Macromol. Res., 13, 446 (2005) https://doi.org/10.1007/BF03218479
  3. K. Lee, Macromol. Res., 13, 277 (2005) https://doi.org/10.1007/BF03218454
  4. G. Khang, J. Rhee, and P. Shin, Macromol. Res., 10, 158 (2002) https://doi.org/10.1007/BF03218266
  5. N. Patel, R. Padera, G. H. Sanders, S. M. Cannizzaro, M.C. Davies, R. Langer, C. J. Roberts, S. J. Tendler, P. M. Williams, and K. M. Shakesheff, FASEB J., 12 1447 (1998)
  6. X. B. Yang, H. I. Roach, N. M. Clarke, S. M. Howdle, R. Quirk, K. M. Shakesheff, and R. O. Oreffo, Bone, 29, 523 (2001) https://doi.org/10.1016/S8756-3282(01)00617-2
  7. R. A. Quirk, B. Kellam, R. N. Bhandari, M. C. Davies, S. J. Tendler, and K. M. Shakesheff, Biotechnol. Bioeng., 81, 625 (2003) https://doi.org/10.1002/bit.10502
  8. G. Lisignoli, M. Fini, G. Giavaresi, N. Nicoli Aldini, S. Toneguzzi, and A. Facchini, Biomaterials, 23, 1043 (2002) https://doi.org/10.1016/S0142-9612(01)00216-2
  9. S. Pitaru, S. Kotev-Emeth, D. Noff, S. Kaffuler, and N. Savion, J. Bone Miner. Res., 8, 919 (1993) https://doi.org/10.1002/jbmr.5650080804
  10. D. A. Puleo, R. A. Kissling, and M. S. Sheu, Biomaterials, 23, 2079 (2002) https://doi.org/10.1016/S0142-9612(01)00339-8
  11. H. D. Kim and R. F. Valentini, J. Biomed. Mater. Res., 59, 573 (2002) https://doi.org/10.1002/jbm.10011
  12. Y. Liu, K. de Groot, and E. B. Hunziker, Bone, 36, 745 (2005) https://doi.org/10.1016/j.bone.2005.02.005
  13. H. Uludag, D. D'Augusta, R. Palmer, G. Timony, and J. Wozney, J. Biomed. Res., 46, 193 (1999) https://doi.org/10.1002/(SICI)1097-4636(199908)46:2<193::AID-JBM8>3.0.CO;2-1
  14. C. R. Bragdon, A. M. Doherty, H. E. Rubash, M. Jasty, X. J. Li, and H. Seeherman, Clin. Orthop., 417, 50 (2003)
  15. I. Grizzi, H. Garreau, S. Li, and M. Vert, Biomaterials, 16, 305 (1995) https://doi.org/10.1016/0142-9612(95)93258-F
  16. P. A. Burke, Intern. Symp. Control. Rel. Bioact. Mater., 23, 133 (1996)
  17. H. R. Lin, C. J. Kuo, C. Y. Yang, S. Y. Shaw, and Y. J. Wu, J. Biomed. Mater. Res., 63, 271 (2002) https://doi.org/10.1002/jbm.10183
  18. H. D. Kim and R. F. Valentini, J. Biomed. Mater. Res., 59, 573 (2002) https://doi.org/10.1002/jbm.10011
  19. S. H. Yang, C. K. Hsu, K. C. Wang, S. M. Hou, and F. H. Lin, J. Biomed. Mater. Res. (B) Appl. Biomater., 74, 468 (2005)
  20. N. Jaiswal, S. E. Haynesworth, A. I. Caplan, and S. P. Bruder, J. Cell. Biochem., 64, 295 (1997) https://doi.org/10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I
  21. J. P. Fisher, Z. Lalani, C. M. Bossano, E. M. Brey, N. Demian, C. M. Johnston, D. Dean, J. A. Jansen, M. E. Wong, and A. G. Mikos, J. Biomed. Mater. Res. A, 68, 428 (2004)
  22. H. S. Yoo, E. A. Lee, J. J. Yoon, and T. G. Park, Biomaterials, 26, 1925 (2005) https://doi.org/10.1016/j.biomaterials.2004.06.021
  23. X. Liu and P. X. Ma, Ann. Biomed. Eng., 32, 477 (2004) https://doi.org/10.1023/B:ABME.0000017544.36001.8e
  24. A. Alhadlaq and J. J. Mao, Stem. Cells Dev., 4, 436 (2004)