• Title/Summary/Keyword: Polymer electrode

Search Result 698, Processing Time 0.029 seconds

Bendable Photoelectrodes by Blending of Polymers with $TiO_2$ For Low Temperature Dye-sensitized Solar Cells

  • Yu, Gi-Cheon;;Lee, Do-Gwon;Kim, Gyeong-Gon;Go, Min-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.319-319
    • /
    • 2010
  • Dye-sensitized solar cells (DSSCs) based on plastic substrates have attracted much attention mainly due to extensive applications such as ubiquitous powers, as well as the practical reasons such as light weight, flexibility and roll-to-roll process. However, conventional high temperature fabrication technology for glass based DSSCs, cannot be applied to flexible devices because polymer substrates cannot withstand the heat more than $150^{\circ}C$. Therefore, low temperature fabrication process, without using a polymer binder or thermal sintering, was required to fabricate necked $TiO_2$. In this presentation, we proposed polymer-inorganic composite photoelectrode, which can be fabricated at low temperature. The concept of composite electrode takes an advantage of utilizing elastic properties of polymers, such as good impact strength. As an elastic material, poly(methyl methacrylate) (PMMA) is selected because of its optical transparency and good adhesive properties. In this work, a polymer-inorganic composite electrode was constructed on FTO/glass substrate under low temperature sintering condition, from the mixture of PMMA and $TiO_2$ colloidal solution. The effect of PMMA composition on the photovoltaic property was investigated. Then, the enhanced mechanical stability of this composite electrode on ITO/PEN substrate was also demonstrated from bending test.

  • PDF

Carbon-free Polymer Air Electrode based on Highly Conductive PEDOT Micro-Particles for Li-O2 Batteries

  • Yoon, Seon Hye;Kim, Jin Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.220-228
    • /
    • 2018
  • This study introduced a carbon-free electrode for $Li-O_2$ cells with the aim of suppressing the side reactions activated by carbon material. Micro-particles of poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, were used as the base material for the air electrode of $Li-O_2$cells. The PEDOT micro-particles were treated with $H_2SO_4$ to improve their electronic conductivity, and LiBr and CsBr were used as the redox mediators to facilitate the dissociation of there action products in the electrode and reduce the over-potential of the $Li-O_2$ cells. The capacity of the electrode employing PEDOT micro-particles was significantly enhanced via $H_2SO_4$ treatment, which is attributed to the increased electronic conductivity. The considerable capacity enhancement and relatively low over-potential of the electrode employing $H_2SO_4$-treated PEDOT micro-particles indicate that the treated PEDOT micro-particles can act as reaction sites and provide storage space for the reaction products. The cyclic performance of the electrode employing $H_2SO_4$-treated PEDOT micro-particles was superior to that of a carbon electrode. The results of the Fourier-transform infrared spectroscopic analysis showed that the accumulation of residual reaction products during cycling was significantly reduced by introducing the carbon-free electrode based on $H_2SO_4$-treated PEDOT micro-particles, compared with that of the carbon electrode. The cycle life was improved owing to the effect of the redox mediators. The refore, the use of the carbon -free electrode combined with redox mediators could realize excellent cyclic performance and low over-potential simultaneously.

An ionic liquid incorporated gel polymer electrolyte for double layer capacitors

  • Perera, Kumudu S.;Prasadini, K.W.;Vidanapathirana, Kamal P.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.21-34
    • /
    • 2020
  • Energy storage devices have received a keen interest throughout the world due to high power consumption. A large number of research activities are being conducted on electrochemical double layer capacitors (EDLCs) because of their high power density and higher energy density. In the present study, an EDLC was fabricated using natural graphite based electrodes and ionic liquid (IL) based gel polymer electrolyte (GPE). The IL based GPE was prepared using the IL, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (1E3MITF) with the polymer poly(vinyl chloride) (PVC) and the salt magnesium trifluoromethanesulfonate (Mg(CF3SO3)2 - MgTF). GPE was characterized by electrochemical impedance spectroscopy (EIS), DC polarization test, linear sweep voltammetry (LSV) test and cyclic voltammetry (CV) test. The maximum room temperature conductivity of the sample was 1.64 × 10-4 Scm-1. The electrolyte was purely an ionic conductor and the anionic contribution was prominent. Fabricated EDLC was characterized by EIS, CV and galvanostatic charge discharge (GCD) tests. CV test of the EDLC exhibits a single electrode specific capacitance of 1.44 Fg-1 initially and GCD test gives 0.83 Fg-1 as initial single electrode specific discharge capacitance. Moreover, a good stability was observed for prolonged cycling and the device can be used for applications with further modifications.

PET Fabric/Poly(3,4-ethylenedioxythiophene) Composite as Polymer Electrode in Redox Supercapacitor

  • Cho, Seung-Hyun;Joo, Jin-Soo;Jung, Bo-Ram;Ha, Tae-Min;Lee, Jun-Young
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.746-749
    • /
    • 2009
  • Poly(ethylene terephthalate) (PET) fabric/poly(3,4-ethylenedioxythiophene) (PEDOT) composite with stable and high electrochemical activity was fabricated by chemical and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) on a PET fabric in sequence. Effects of polymerization conditions on the following characteristics of the composite were studied: electrical conductivity and surface morphology. The electrochemical properties were also investigated by cyclic voltammetry and cyclic charge/discharge experiments. The specific volume resistivity, electrical conductivity and specific discharge capacitance of the composite were 0.034 $\Omega-cm$ and 25 S/cm, and 54.5 F/g, respectively.

Photosensitive Electrode Paste Formulation and Its Effect on Photolithographic Process

  • Park, Lee-Soon;Im, Moo-Sik;Park, Jin-Woo;Kim, Hong-Tak;Ryu, Jae-Hwa;Park, Seung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.381-384
    • /
    • 2003
  • Photosensitive electordes(Ag and Black) are widely used in the patterning of both address and bus electrodes on the rear and front panel of plasma display panel (PDP). As the need for high resolution(>XGA) and large area(>60 inches) PDP is increased, basic understanding of each component of formulation on the photolithographic process of patterning electrodes are required in order to increase the yield in the production of PDP. In this work, the materials and amount of necessary components of photosensitive electrode paste and their effect on the photolithographic process of patterning electrodes were studied.

  • PDF

Structural Characters of (Phenol-Formaldehyde-Aniline Polymer)-Nickel(Ⅱ) Nitrate ((Phenol-Formaldehyde-Aniline 중합체)-Nickel(Ⅱ) Nitrate 구조에 관한 연구)

  • Doo Soon Shin;Bong Keun Park
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.409-415
    • /
    • 1988
  • In this study, an aniline modified Bakelite-A resine was synthesized by polymerizing phenol, formaldehyde and aniline. Structural properties of the polymer were examined by IR spectroscopy, elemental analysis and vapour pressure osmometry. By visible spectroscopy, it was found that nitrogens of amine groups in the polymer are strongly coordinated to Ni(Ⅱ). Also a nitrate ion-selective PVC membrane electrode based on the polymer-Ni(Ⅱ) complex as ion carrier was preparaed. The electrode gave a linear response with a Nernstian slope within the concentration range $10^{-1}$ M∼$10^{-4}$M $KNO_3$.

  • PDF

Electrocatalytic Reduction of Molecular Oxygen at Poly(1,8-diaminonaphthalene) and Poly(Co(II)-(1,8-diaminonaphthalene)) Coated Electrodes

  • Park, Hyun;Kwon, Tae-guen;Park, Deog-Su;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1763-1768
    • /
    • 2006
  • The application of poly(Co(II)-(1,8-diaminonaphthalene))(poly(Co-DAN)) and poly(1,8-diaminonaphthalene) (Poly(1,8-DAN)) to the electrocatalytic reduction of molecular oxygen was investigated, which were electrochemically grown by the potential cycling method on the glassy carbon electrodes. The reduction of oxygen at the polymer and its metal complex polymer coated electrodes were irreversible and diffusion controlled. The Poly(1,8-DAN) and Poly(Co-DAN) films revealed the potential shifts for the oxygen reduction to 30 mV and 110 mV, respectively, in an aqueous solution, compared with that of the bare electrode. Hydrodynamic voltammetry with a rotating ring-disk electrode showed that Poly(1,8-DAN) and Poly(Co-DAN) coated electrodes converted respectively 84% and 22% of $O_2$ to $H_2O$ via a four electron reduction pathway.

Charge/discharge Properties of PFPT-flyash Electrodes for Supercapacitor (Supercapacitor용 PFPT-flyash 전극의 충방전 특성)

  • Kim, Jong-Uk;Wee, Sung-Dong;Jeon, Yeon-Su;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.91-94
    • /
    • 2003
  • The purpose of this project is to research and development of thin film supercapacitor with conducting polymer composite electrodes and polymer electrolyte which have high energy density for thin film supercapacitor. We investigated cyclic voltammetry and charge/discharge cycling of PFPT-flyash electrodes. The first discharge capacity of PFPT-flyash electrode with 40wt.% flyash was 24F/g, while that of PFPT-VOflyash electrode with 40wt.% VOflyash was 32F/g. The capacitance of PFPT-VOflyash composite film with polymer electrolyte was 32 F/g at 1st and 20th cycle, respectively. The capacitance of PFPT-VOflyash/Li cell with 40 wt% VOflyash was 141 F/g at 8th cycle.

  • PDF

Thermally Crosslinked Polyimide Binders for Si-alloy Anodes in Li-ion Batteries

  • Chang, Hyeong-Seok;Ji, Sang-Gu;Rho, Miso;Lee, Byoung-Min;Kim, Sung-Soo;Choi, Jae-Hak
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.339-346
    • /
    • 2022
  • Silicon (Si) has attracted considerable attention due to its high theoretical capacity compared to conventional graphite anode materials. However, Si-based anode materials suffer from rapid capacity loss due to mechanical failure caused by large volume change during cycling. To alleviate this phenomenon, crosslinked polymeric binders with strong interactions are highly desirable to ensure the electrode integrity. In this study, thermally crosslinked polyimide binders were used for Si-alloy anodes in Li-ion batteries. The crosslinked polyimide binder was found to have high adhesion strength, resulting in enhanced electrode integrity during cycling. Therefore, the Si-alloy anodes with crosslinked polyimide binder provide enhanced electrochemical performance, such as Coulombic efficiency, capacity retention, and cycle stability.

Fabrication and Electrochemical Characterization of N/S co-doped Carbon Felts for Electric Double-Layer Capacitors (전기이중층 커패시터용 질소/황이 동시에 도핑된 탄소 펠트의 제조 및 전기화학적 성능 평가)

  • Lee, Byoung-Min;Yun, Je Moon;Choi, Jae-Hak
    • Korean Journal of Materials Research
    • /
    • v.32 no.5
    • /
    • pp.270-279
    • /
    • 2022
  • In this study, N/S co-doped carbon felt (N/S-CF) was prepared and characterized as an electrode material for electric double-layer capacitors (EDLCs). A commercial carbon felt (CF) was immersed in an aqueous solution of thiourea and then thermally treated at 800 ℃ under an inert atmosphere. The prepared N/S-CF showed a large specific surface area with hierarchical pore structures. The electrochemical performance of the N/S-CF-based electrode was evaluated using both 3-electrode and 2-electrode systems. In the 3-electrode system, the N/S-CF-based electrode showed a good specific capacitance of 177 F/g at 1 A/g and a good rate capability of 41% at 20 A/g. In the 2-electrode system (symmetric capacitor), the freestanding N/S-CF-based electrode showed a specific capacitance of 275 mF/cm2 at 2 mA/cm2, a rate capability of 62.5 % at 100 mA/cm2, a specific power density of ~ 25,000 mW/cm2 at an energy density of 23.9 mWh/cm2, and a cycling stability of ~ 100 % at 100 mA/cm2 after 20,000 cycles. These results indicate the N/S co-doped carbon felts can be a promising candidate as a new electrode material in a symmetric capacitor.