Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.5.270

Fabrication and Electrochemical Characterization of N/S co-doped Carbon Felts for Electric Double-Layer Capacitors  

Lee, Byoung-Min (Department of Polymer Science and Engineering, Chungnam National University)
Yun, Je Moon (Division of Advanced Materials Engineering, Dong-Eui University)
Choi, Jae-Hak (Department of Polymer Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.32, no.5, 2022 , pp. 270-279 More about this Journal
Abstract
In this study, N/S co-doped carbon felt (N/S-CF) was prepared and characterized as an electrode material for electric double-layer capacitors (EDLCs). A commercial carbon felt (CF) was immersed in an aqueous solution of thiourea and then thermally treated at 800 ℃ under an inert atmosphere. The prepared N/S-CF showed a large specific surface area with hierarchical pore structures. The electrochemical performance of the N/S-CF-based electrode was evaluated using both 3-electrode and 2-electrode systems. In the 3-electrode system, the N/S-CF-based electrode showed a good specific capacitance of 177 F/g at 1 A/g and a good rate capability of 41% at 20 A/g. In the 2-electrode system (symmetric capacitor), the freestanding N/S-CF-based electrode showed a specific capacitance of 275 mF/cm2 at 2 mA/cm2, a rate capability of 62.5 % at 100 mA/cm2, a specific power density of ~ 25,000 mW/cm2 at an energy density of 23.9 mWh/cm2, and a cycling stability of ~ 100 % at 100 mA/cm2 after 20,000 cycles. These results indicate the N/S co-doped carbon felts can be a promising candidate as a new electrode material in a symmetric capacitor.
Keywords
carbon felt; thiourea; electric double-layer capacitor; electrode; doping;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. S. Chang, A. R. Hwang, B. M. Lee, J. M. Yun and J. H. Choi, Korean J. Mater. Res., 31, 502 (2021).   DOI
2 L. L. Zhang and X. S. Zhao, Chem. Soc. Rev., 38, 2520 (2009).   DOI
3 S. Song, F. Ma, G. Wu, D. Ma, W. Geng and J. Wan, J. Mater. Chem. A, 2, 18154 (2015).
4 K. C. Struckhoff, M. Thommes and L. Sarkisov, Adv. Mater. Interfaces, 7, 2000184 (2020).   DOI
5 Y. Wang, Y. Liu, D. Wang, C. Wang, L. Guo and T. Yi, Appl. Surf. Sci., 506, 145014 (2020).   DOI
6 A. Muzaffara, M. B. Ahamed, K. Deshmukh and J. Thirumalai, Renew. Sust. Energ. Rev., 101, 123 (2019).   DOI
7 B. M. Lee, B. S. Choi, J. Y. Lee, S. K. Hong, J. S. Lee and J. H. Choi, Carbon Lett., 31, 67 (2021).   DOI
8 A. M. Abioye and F. N. Ani, Renew. Sust. Energ. Rev., 52, 1282 (2015).   DOI
9 M. Kim, I. Oh and J. Kim, Phys. Chem. Chem. Phys., 17, 4424 (2015).   DOI
10 Q. Wang, J. Yan, Y. Wang, T. Wei, M. Zhang, X. Jing and Z. Fan, Carbon, 67, 119 (2014).   DOI
11 S. Saha, P. Samanta, N. C. Murmu and T. K uila, J. Energy Storage, 17, 181 (2018).   DOI
12 A. B. Fuertes, G. A. Ferrero and M. Sevilla, J. Mater. Chem. A, 2, 14439 (2014).   DOI
13 L. Hu, J. Hou, Y. Ma, H. Li and T. Zhai, J. Mater. Chem. A, 4, 15006 (2016).   DOI
14 J. Du, Y. Zhang, H. Lv and A. Chen, Adv. Powder Technol., 32, 1294 (2021).   DOI
15 J. Dai, L. Wang, A. Xie, J. He and Y. Yan, ACS Sustainable Chem. Eng., 8, 739 (2020).   DOI
16 Y. Q. Shan, Z. X. Xu, P. G. Duan, H. L. Fan, X. Hu and R. Luque, ACS Sustainable Chem. Eng., 8, 15809 (2020).   DOI
17 V. P. Timchenko, A. L. Novozhilov and O. A. Slepysheva, Russ. J. Gen. Chem., 74, 1046 (2004).   DOI
18 B. M. Lee, N. Umirov, J. Y. Lee, J. Y. Lee, B. S. Choi, S. K. Hong, S. S. Kim and J. H. Choi, Int. J. Energy Res., 45, 9530 (2021).   DOI
19 C. Gao, Q. Wang, S. Luo, Z. Wang, Y. Zhang, Y. Liu, A. Hao and R. Guo, J. Power Sources, 415, 165 (2019).   DOI
20 D. S. K won, H. Y. Choi, B. M. Lee, Y. G. Jeong, D. Yang, S. T. Kim and J. H. Choi, Appl. Surf. Sci., 471, 328 (2019).   DOI
21 M. P. Bondarde, P. H. Wadekar and S. Some, J. Energy Storage, 32, 101783 (2020).   DOI
22 S. Zhu, J. Ni and Y. Li, Nano Res., 13, 1825 (2020).   DOI
23 C. Yuan, X. Liu, M. Jia, Z. Luo and J. Yao, J. Mater. Chem. A, 3, 3409 (2015).   DOI
24 B. M. Lee, H. S. Chang, J. H. Choi and S. K. Hong, Korean J. Mater. Res., 31, 264 (2021).   DOI
25 S. A. Chernyak, A. S. Ivanov, D. N. Stolbov, T. B. Egorova, K. I. Maslakov, Z. Shen, V. V. Lunin and S. V. Savilov, Appl. Surf. Sci., 488, 51 (2019).   DOI
26 Y. Deng, Y. Xie, K. Zou and X. Ji, J. Mater. Chem. A, 4, 1144 (2016).   DOI
27 K. Zou, Y. Deng, J. Chen, Y. Qian, Y. Yang, Y. Li and G. Chen, J. Power Sources, 378, 579 (2013).   DOI
28 D. Li, C. Yu, M. Wang, Y. Zhang and C. Pan, RSC Adv., 4, 55394 (2014).   DOI
29 Z. Khanam, J. Liu and S. Song, Electrochim. Acta, 363, 137208 (2020).   DOI
30 D. Sun, X. Yan, J. Lang and Q. Xue, J. Power Sources, 222, 52 (2013).   DOI
31 L. Tong, M. Gao, C. Jiang and K. Cai, J. Mater. Chem. A, 7, 10751 (2019).   DOI
32 T. X. H. Le, M. Bechelany and M. Cretin, Carbon, 122, 564 (2017).   DOI
33 B. Y. Sheng, X. Tang, E. Peng and J. Xue, J. Mater. Chem. B, 1, 512 (2013).   DOI
34 Y. Liu, L. Zhou, Y. Li, R. Deng and H. Zhang, Nanoscale, 9, 491 (2017).   DOI
35 D. He, Y. Jiang, H. Lv, M. Pan and S. Mu, Appl. Catal., B, 132-133, 379 (2013).   DOI
36 J. Ruan, T. Yuan, Y. Pang, S. Luo, C. Peng, J. Yang and S. Zheng, Carbon, 126, 6 (2018).
37 L. Z. Fan, T. T. Chen, W. L. Song, X. Li and S. Zhang, Sci. Rep., 5, 15388 (2015).   DOI
38 S. Huo, M. Liu, L. Wu, M. Liu, M. Xu, W. Ni and Y. M. Yan, J. Power Sources, 387, 81 (2018).   DOI
39 X. Zhou, P. Wang, Y. Zhang, X. Zhang and Y. Jiang, ACS Sustainable Chem. Eng., 4, 5585 (2016).   DOI
40 B. M. Lee, V. T. Bui, H. S. Lee, S. K. Hong, H. S. Choi and J. H. Choi, Radiat. Phys. Chem., 163, 18 (2019).   DOI
41 B. Chang, W. Shi, S. Han, Y. Zhou, Y. Liu, S. Zhang and B. Yang, Chem. Eng. J., 350, 585 (2018).   DOI
42 M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol and K. S. W. Sing, Pure Appl. Chem., 87, 1051 (2015).   DOI
43 Q. Zhang, K. Han, S. Li, M. Li, J. Li and K. Ren, Nanoscale, 5, 2427 (2018).