• Title/Summary/Keyword: Polymer core

Search Result 370, Processing Time 0.028 seconds

Properties of St/BA Modified Cellular Lightweight Concrete as Sandwich Panel Core (샌드위치패널심재로 활용한 St/BA 개질 다공성 경량 콘크리트의 특성)

  • 강내민;노정식;도정윤;문경주;소양섭
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.31-34
    • /
    • 2003
  • Sandwich panel is composed of the facing sheets which support the external load, the cellular core with the low thermal conductivity and the adhesive agent to bond them. The cellular core was produced by binding lightweight cellular aggregates with cement and two types of acrylic base St/BA emulsion were added with a view to improving the workability ion due to high absorption of light weight aggregate and to develope more strength, respectively. This investigation is to comprehend the effect of the addition of two types of St/BA on thermal conductivity, calorific value and exhaustion content of noxious gas in addition re compressive and flexural strength. Flexural strength of the specimen made with St/BA-2 ranged 20kgf/cm2 to 25kgf/cm2 and was about 50% to 100% as high as that of the non-fiber specimen. Thermal conductivity was recorded from 2.0 to 3.0 kcal/mh$^{\circ}C$ and calorific value of St/BA modified specimen was much lower than that of commercial sandwich panel core of EPS and urethane. Careful caution has to be taken because generation of noxious gas such as CO, NO and SO2 tend to increase with addition of polymer cement ratio.

  • PDF

Fabrication of PLGA/Dextran Double-Layered Microspheres by Oil-in-Water Solvent Evaporation Method (O/W 용매 증발법을 이용한 PLGA와 덱스트란의 이중층 미립구 제조)

  • Ko Jong Tae;Lee Jae-Ho;Lee Chang-Rae;Shin Hyung Sik;Yuk Soon Hong;Kim Moon Suk;Khang Gilson;Rhee John M.;Lee Hai Bang
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.543-548
    • /
    • 2005
  • Double-layered spheres play an important role in controlling drug delivery for pharmaceutical application, because of the low initial burst compared with single-layered spheres and targetable delivery to specific organ. But it has drawback in loading drug and controlling size. In this study, we developed double-layered spheres using relatively simple oil-in-water (O/W) solvent evaporation method witw/without ultrasonication and investigated the size variation of the double-layered microspheres on the contents of poly(lactide- co-glycolide) (PLGA). Double - layered spheres were char-acterized by scanning elecron microscope (SEM), camscope, and confocal fluorescence laser microscope (CFLM). Double-layered spheres showed smooth surfaces and obvious difference between core and corona by SEM observation and camscope. We observed the fluorescent core in the double-walled spheres composed of FlTC-dextran and PLGA using CFLM. It was found that the core of the microsphere was dextran and the corona of the fabricate microsphere was PLGA. Also, the more PLGA concentration, the more the size of the fabricating double-layered sphere observed.

Use of Core-Crosslinked Amphiphilic Polymer Nanoparticles as Templates for Synthesis of Nanostructured Inorganic Materials (코아 가교 양친성 고분자 나노입자 템플레이트를 이용한 무기물 나노 구조체 합성)

  • Kim, Hyun-Ji;Kim, Na-Hae;Kim, Juyoung
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.6-14
    • /
    • 2015
  • In this study, physically and chemically stable core-crosslinked amphiphilic polymer (CCAP) nanoparticles were prepared using amphiphilic reactive precursors via soap-free emulsion process. Obtained CCAP nanoparticles were used as templates for synthesis of nanostructured $TiO_2$ nanoparticles. First, CCAP nanoparticles dispersed aqueous solutions were mixed with titanium isopropoxide to prepare stable organic-inorganic hybrid sols, and then obtained sols were spin coated onto glass substrate to prepare hybrid thin films onto glass, and then hybrid thin films were calcinated at various temperature to remove CCAP. Nanostructure of calcinated thin fims were examined by SEM. To study effect of CCAP nanoparticles on nanostructure of $TiO_2$ nanoparticles, the morphology of $TiO_2$ nanoparticles prepared using various CCAP templates was compared with that of $TiO_2$ nanoparticles prepared using conventional organic template, nonionic surfactant, Triton X-100.

Synthesis of Dendritic Carbosilanes by the Use of Hyperbranched Polymers (Hyperbranched Polymer를 이용한 나뭇가지꼴 카보실란 거대분자의 합성)

  • Kim, Chung Kyun;Kang, Sung Kyung;Park, Eun Mi
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.4
    • /
    • pp.393-400
    • /
    • 1999
  • Dendritic carbosilanes based on hyperbranched polycarbosilanes as core molecule have been prepared The core molecules were obtained by the use of hydrosilation of $HSiMe_{3-n}$$(CH_2CH=CH_2)_n$(n=2; $AB_2$,3;$AB_3$type). The hyperbranched core $AB_2\;and\; AB_3$ type polymers were generated to higher molecular dendritic carbosilanes Gn+1 by the use of hydrosilation and alkenylation sequence. The Gn+2P generations were not obtained as unified molecules by the use of hydrosilation with $HSiMeCl_2$. Gn and Gn+1 type polymers were produced to polysilol by the reaction of 9-BBN and alkali medium oxidation of hydroborated compounds. The degree for reaction has been controlled by the NMR spectroscopy.

  • PDF

Spectroscopic Properties of Er-doped Sulfide Fiber (Er 첨가 황화물계 광섬유의 제조 및 분광학적 특성)

  • Choi, Yong-Gyu;Lim, Dong-Sung;Kim, Kyong-Hon;Park, Se-Ho;Heo, Jong
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.8
    • /
    • pp.781-786
    • /
    • 2000
  • An Er-doped sulfide fiber was drawn, and its spectroscopic properties were analyzed. Compositions of a 1000 ppmwt Er3+-doped core and an undoped clad were Ge30-Ga1-Asg-S61 and Ge30-As8-S62, in at.%, respectively. Refractive index of the core composition was approximately 0.01 high than that of the clad. In order to enhance the mechanical stability as well as to prevent infiltration of impurity ions such as OH-, an UV-curable polymer was used for the coating. The optical loss of a fiber formed directly from a polymer coated core rod without cladding was ∼15 dB/m at 1.06$\mu\textrm{m}$. In the case of a fiber with core/clad structure, the optical loss was so high that the stimulated emission of erbium fluorescence was not evident. It is believed that presence of inhomogeneous core/clad interface and crystalline aggregates precipitated in the clad region were responsible for the high optical loss. On the other hand, fluorescence characteristics of Er3+ embedded in the core region were more or loss deteriorate compared to fiber preform, which is attributed to the redistribution of the Er ions along with the partial crystallization of the core glass during the fiberization process.

  • PDF

Preparation of Core/Shell Nanoparticles Using Poly(3,4-ethylenedioxythiophene) and Multi-Walled Carbon Nanotube Nanocomposites via an Atom Transfer Radical Polymerization (Poly(3,4-ethylenedioxythiophene)을 이용한 Core/shell 나노입자와 원자이동 라디칼중합 공정에 의한 다중벽 탄소나노튜브 나노복합체 제조)

  • Joo, Young-Tae;Jin, Seon-Mi;Kim, Yang-Soo
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.452-457
    • /
    • 2009
  • Hybrid nanomaterials consisting of multi-walled carbon nanotube(MWNT) and/or PEDOT of conductive polymer were prepared in this study. In the presence of catalyst and ligand, the MWNT-Br compound prepared by the successive surface treatment reaction was mixed with MMA to initiate the atom transfer radical polymerization process. PMMA was covalently linked to the surface of MWNT for the formation of MWNT/PMMA nanocomposites. The EDOT and oxidant were added in the aqueous emulsion of PS produced via a miniemulsion polymerization process and then it proceeded to carry out the oxidative chemical polymerization of EDOT for the preparation of PEDOT/PS nanoparticles with the core-shell structure. The aqueous dispersion of PEDOT:poly(styrene sulfonate) (PSS) was mixed with the silica particles treated with a silane compound and thus PEDOT:PSS-clad silica nanoparticles were prepared by the surface chemistry reaction. The hybrid nanomaterials were analyzed by using TEM, FE-SEM, TGA, EDX, UV, and FT-IR.

Preparation and Characterization of Multilayer Microcapsules using Biocompatible Polymers (생체적합성 고분자를 사용한 다층 조립 구조 캡슐의 제조와 특성)

  • Jeon, Woohong;Kim, Gwang Yeon;Kim, Gue-Hyun;Ha, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.178-184
    • /
    • 2010
  • The aim of this work is the fabrication of polyelectrolyte microcapsules composed of biocompatible polymers such as chitosan, heparin and alginate, to encapsulate the fluorescein isothiocyanate(FITC)-albumin, and to investigate the protein release behavior therefrom. Polyelectrolyte capsules with 4-layer structures could be prepared with biocompatible materials by oppositely charged adsorption using melamin-foramide as a template. Transmission electron microscope(TEM), scanning electron microscope(SEM) and optical microscope confirmed hollow capsule structures. Protein release before and after encapsulation was monitored with a UV-Vis spectrometer. Microcapsules have different behaviors depending on the kind of polyelectrolyte polymers, chitosan-heparin capsules or chitosan-alginate capsules. In conclusion, the polyelectrolyte multilayer shells can be switched between an open and closed state by means of tuning the pH value.

A Study on Thermal Stress Analysis of Plastic-Core Solder Balls (플라스틱 핵 솔더볼의 열응력 해석에 관한 연구)

  • Kim, H.D.;Yoon, D.Y.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.159-162
    • /
    • 2007
  • Recently, Pb-free solder ball technology, which is getting more significant in miniaturization of electronic equipment, and resolution of recent environmental problems, is necessary to be developed. A plastic-core solder ball is much promising in those considerations. Plastic-core solder balls have the tendency to replace the usual metal-core solder ball from low material cost and superior mechanical properties. The thermal effects, however, are important in manufacturing process, such as deposing micro-sized metal thin film on the spherical polymer surface. Furthermore plastic-core solder balls are easy to be broken due to CTE and elastic coefficient of material property from heat transfer. We propose technical computational investigations for the manufacturing design and the reliability of plastic-core solder ball from thermal stress analysis.

Preparation and Properties of Plastic Optical Fibers (플라스틱 광섬유의 제조 및 특성에 관한 연구)

  • 김한도
    • Textile Coloration and Finishing
    • /
    • v.5 no.1
    • /
    • pp.19-25
    • /
    • 1993
  • Plastic optical fibers(POFs) composed of poly(methylmethacrylate) (PMMA), polystyrene (PS), or polycarbonate(PC) as a core materials, and of fluorinated polymer or PMMA as a cladding were fabricated and their properties were investigated in this study. The attenuation loss of PMAA core POF was about 1,700 dB/Km at 660 nm, the loss of PS core POF was 1,800 dB/Km at 560 nm, and the loss of PC core POF was 2,200 dB/Km at 780 nm. These attenuation losses of POFs prepared ill this study were higher than those of commerically available POFs. Compared to PMMA and PS core POFs, PC core POF has excellent characteristics, including high thermal stability, high flexibility, and high impact strength.

  • PDF

Preparation of Shape-Controlled Palladium Nanoparticles for Electrocatalysts and Their Performance Evaluation for Oxygen Reduction Reaction (연료전지 전극촉매용 팔라듐 나노입자 형상 제어 및 산소환원반응 성능 평가)

  • KIM, KYOUNG-HEE;LEE, JUNG-DON;LEE, HYOJUNE;PARK, SEOK-HEE;YIM, SUNG-DAE;JUNG, NAMGEE;PARK, GU-GON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.450-457
    • /
    • 2018
  • To design the practical core-shell electrocatalysts, combination of core and shell materials is important to meet catalytic activity and durability target. In general, Pd is considered as a good core material due to its best activity caused by strain/ligand effect. Preparing Pd nanoparticles can be a starting point in fabricating core-shell type electrocatalysts, much simplified Pd preparing process is suggested by using carbon monoxide (CO) as a reducing agent and/or capping agent. The solvent composition and reaction temperature can control to nanosheet, tetrahedron, and sphere without using additional stabilizer. Among them, Pd nanosheet which has mainly (111) plane showed about 3 times higher electrocatalytic activity for oxygen reduction reaction (ORR) to the spherical Pd nanoparticles. The enhanced ORR activity of Pd nanosheets can be attributed to the exposure of Pd (111) surface and the high electrochemical surface area. Therefore, we demonstrated that the shape of Pd nanomaterials is easily controlled via a facile reduction method using CO, and (111) plane-oriented Pd nanosheets can be a promising ORR catalysts and core material for polymer electrolyte fuel cells (PEFCs).