Hyperbranched Polymer를 이용한 나뭇가지꼴 카보실란 거대분자의 합성

金貞均* · 姜成炅 · 朴恩美 동아대학교 자연과학대학 화학과 (1999. 4. 19 접수)

Synthesis of Dendritic Carbosilanes by the Use of Hyperbranched Polymers

Chungkyun Kim*, Sungkyung Kang, and Eunmi Park

Department of Chemistry, Dong A University, Pusan 604-714, Korea (Received April 19, 1999)

요 약. Hyperbranched polymer를 이용한 나뭇가지꼴 카보실란 거대분자를 합성하였다. Hyperbranched polymer의 영세대 화합물의 합성은 HSiMe_{3.9}(CH₂CH=CH₂)₀(n=2; AB₂, 3; AB₃형)의 수소화규소첨가반응 방법을 이용하여 합성하였다. Hyperbranched polymer AB₃와 AB₃형 고분자 화합물은 수소화규소첨가반응과 알 켄첨가반응에 의해 Gn+1형 나뭇가지꼴 거대분자로 성장하였다. Gn+2P세대 화합물은 HSiMeCl₃와의 수소화 규소첩가반응 방법에 의해 모든 가지가 동일형 화합물을 형성하지 못했다. Gn과 Gn+1형 고분자 화합물은 9-BBN과의 반응과 반응생성물의 산화반응에 의해서 polysilol을 형성하였다. 반응의 정도는 NMR에 의해서 확인할 수 있었다.

ABSTRACT. Dendritic carbosilanes based on hyperbranched polycarbosilanes as core molecule have been prepared. The core molecules were obtained by the use of hydrosilation of $HSiMe_{3,n}(CH_2CH=CH_2)_n(n=2; AB_2 \text{ and } 3; AB_3 \text{ type})$. The hyperbranched core AB_2 and AB_3 type polymers were generated to higher molecular dendritic carbosilanes Gn+1 by the use of hydrosilation and alkenylation sequence. The Gn+2P generations were not obtained as unified molecules by the use of hydrosilation with HSiMeCl₂. Gn and Gn+1 type polymers were produced to polysilol by the reaction of 9-BBN and alkali medium oxidation of hydroborated compounds. The degree for reaction has been controlled by theNMR spectroscopy.

서 톤

나무의 성장과정을 닮은 분자·나뭇가지꼴 거대분자 (dendrimer)'에 관한 연구는 비교적 근자에 시작된 연 구분야로서 분자가 가지는 아름다운 모양과 많은 응 용성 등에 의해 흥미의 대상이 되고있다.² 나뭇가지꼴 거대분자는 한 개의 분자 안에 정확한 숫자의 기능기 를 가질 수 있으며 모든 기능기들은 공유결합 혹은 배위결합을 통해 핵을 이루는 분자에 결합되어있어 화 합물이 가지는 성질을 예측할 수 있는 매우 유용한 장점을 가지고 있다. 이러한 분자는 지금까지 알려진 고분자 화합물과는 달리 한 개의 핵분자가 가질 수 있는 기능기의 수와 분자의 크기를 연구자에 의해 조 정할 수 있어 정밀 기능성 고분자 화합물로서 적합한 조건을 가지고 있다고 할 수 있다. 나뭇가지꼴 거대분 자의 응용성은 매우 다양하며 특히 의약품 보조제, 촉 매, 생화학보조제, 크로마토그라피, 전자소자, 염료, 초분자화합물 등에 이용되고 있다.³

나뭇가지꼴 거대분자에 관한 연구는 Vögtle'에 의해 시작되어 Newkome.⁵ Tomalia.⁶ Fréchet⁷ 등에 의해 polyamines, polyamidoamines, polyether 그리고 peptide dendrimer 등 여러 가지 모델이 개발되었다.⁸ 무 기착물 분자를 이용한 나뭇가지꼴 거대분자의 합성은 Schmidbaur.⁹ Puddephart,¹⁰ Campagna¹¹ 등에 의해 금, 백금, 코발트착물 등 다양한 모델이 개발되었으며 주로 발광소자 등에 이용되고 있다.¹² 유기규소 화합물 을 중심으로한 연구는 1993년 van der Made¹³에 의 해서 allylsilane을 중심 핵분자로한 모델이 연구되기 시작하여 Frey,¹⁴ Seyferth,¹⁵ Sekiguchi¹⁰ 등에 의해서 polysilol, carbosilane 그리고 polysilane dendrimer 등으로 발전되고 있다.

나뭇가지꼴 거대분자의 합성법에는 발산형 성장법 (divergent method)과 수렴형 성장법(convergent method)이 주로 이용되고 있으며 이 두 성장법을 흔 합한 형태의 성장법(two stage growth method 등)도 개발되고 있다.¹⁷ 나뭇가지꼴 거대분자의 핵분자는 주 로 일정한 기능기를 가진 단분자를 택하고 있지만 다 기능성 고분자 물질을 택하는 경우도 있다.¹⁸ 본 연구 에서는 지금까지 본인 등에 의해 연구되었던 단분자 를 성장핵으로한 나뭇가지꼴 거대분자¹⁹를 발전시킨 모 델로서 hyperbranched polymer가 나뭇가지꼴 거대분 자의 핵(core)을 이루는 분자 형태를 가지고 접근 하 고자한다.

Hyperbranched carbosilane 거대분자의 제법은 최근 에 개발되었으며²⁰ 나뭇가지꼴 거대분자로의 응용을 본 연구에서 수행하였다. Hyperbranched polymer의 합성 은 일반적인 고분자 화합물의 제법과는 달리 한 개의 핵분자에 2~3 혹은 그 이상의 서로 다른 기능기를 가져야 한다. 본 연구에 사용된 hyperbranched carbosilane 거대분자의 경우(HSiMe(CH₂CH=CH₂)); AB₂ 형, HSi(CH₂CH=CH₂)); AB₃형) 한 개의 분자 안에 한 개의 Si-H 기능기를 가지고 있으며 2개(AB₂형) 혹 은 3개(AB₃형)의 allyl기를 포함하게 설계된 모델로서 hydrosilation 법에 의해 거대분자로 성장하게 되면 선 상 고분자를 형성하지 못하고 hyperbranched polymer 를 형성하게 된다(Scheme 1). 이러한 hyperbranched carbosilane 거대분자를 성장핵으로 이용한 나뭇가지꼴

AB₂ type

거대분자의 경우 그 제법은 단순하지만 정확한 숫자 의 기능기와 분자량을 알 수 없다는 단점을 가지고 있다. 그러나 이러한 분자는 정밀을 요하지 않는 경우 에는 쉽게 응용될 수 있다는 장점도 있다.

실 험

본 실험은 건조 질소기류 하에서 이루어졌으며 본 실험에 사용된 극성용매는 벤조페는 케틸용액(blue)을 금속 Na에 의해 형성시킨 다음 실험 전 중류하여 사 용하였다. 비극성 용매인 톨루엔, 벤젠 그리고 펜탄 등 은 Na/K₁₈ 아말감을 첨가시켜 환류시킨 다음 중류하 여 사용하였다. 본 실험에 사용된 시약 아릴마그네시 움 브로마이드는 문헌에 있는 일반적인 방법에 의해 합성하였다. HSiMeCl₂와 HSiCl₅는 사용 직전 진공장 치를 이용하여 감압중류하여 사용하였다. 실험에 사용 된 분석 기기는 NMR(Bruker AC 200), GPC(Varian 5020)를 사용하였다.

각 반응과정은 반응도중에 반응용액을 채취하여 'H NMR에 의해 반응정도를 확인하였으며 반응이 완전히 진행되었다고 판단될 경우에만 분리정제를 시도하였다. 미량의 미확인 혹은 구세대(old generation) 화합물이 존재할 경우 반응시간의 연장, 반응물의 첨가 둥의 조 작을 통하여 반응을 완결시켰다.

TriallyIsilane의 hydrosilation(Gr; AB,홥섬). Triallylsilane(G0) 4.90 g(32.19 mmol)을 toluene(25 mL)에 녹여 백금 촉매(Pt/C, 10% Pt content) 0.1 g을 가하 여 환류 교반한 다음 'H NMR로 Si-H 결합이 검출되 지 않을 때까지 반응을 진행시킨다(2일). 촉매를 여과 하고 감압 중류법에 의해 용매를 제거하여 4.88 g의 점도가 큰 갈색 gel형의 고분자 물질을 얻었다. 'H NMR(ppm, CDCl₃); &=0.66~0.58(m, CH₂), 1.39~1.34 (m, CH₂), 1.60~1.52(m, CH₂(allyl)), 4.92~4.82 (m, =CH₂(allyl)), 5.89~5.62(m, HC=(allyl)). ¹³C NMR (ppm, CDCl₃); &=15.17, 16.86(CH₂), 21.29 (CH₂ (allyl)), 113.51(=CH₂(allyl)), 134.35(HC=(allyl)).

Gn세대와 HSiMeCl:의 반응(Gn+1P; AB,합섬). 2.10 g(13.81 mmol)의 Gn을 toluene(50 mL)에 녹여 백금촉매(Pt/C. 10% content Pt) 0.1 g을 넣은 후 7.0 g(66.84 mmol)의 HMeSiCl₂을 진공 중류법에 의 해 첨가한 다음 2일간 환류 교반하여 NMR에 의해 allyl 기능기의 CH=CH₂가 완전히 반응하였음을 확인 한 다음 촉매를 여과하고 강압 증류법으로 용매를 제 거하여 4.50 g의 점도가 높은 갈색의 Gn+1P을 얻었 다. ¹H NMR(ppm, CDCl₃); δ=0.59~0.62(m, CH₂ (Gn+1P), (G0~Gn)). 0.78(s, Si-Me(Gn+1P)), 1.23~ 1.15(m, CH₂(Gn+1P)), 1.36~1.30(m, CH₂(G0~Gn)), 1.54(m, CH₂(Gn+1P)). ¹³C NMR(ppm, CDCl₃); δ= 5.53 (Si-Me(Gn+1P)), 15.94(CH₂, (G0~Gn)), 16.73(CH₂ (Gn+1P))17.35(CH₃, (G0~Gn)), 25.91(CH₂(Gn+1P)).

Gn+1P의 allylation(Gn+1; AB,합성). 4.40 g의 Gn+1P에 THF 50 mL를 넣어 녹인 후 allylmagnesium bromide(1.31 M in ether) 50 mL(65.5 mmol) 를 천천히 첨가 하였다. 3시간 동안 환류 교반한 후 용매를 감압 증류법에 의해 제거하고 toluene을 가하 여 반응과정에서 생성된 염을 여과하여 제거하고 silica get을 이용한 column chromatograpy를 통해 정제하였 다(수울 4.10 g). 'H NMR(ppm, CDCl₃); δ= -0.01 (s, Si-Me(Gn+1)), 0.66~0.58(m, CH₂(GO~Gn)), 1.33 (m, CH₂(GO~Gn)), 1.56~1.52(m, CH₂(allyl)), 4.89 ~4.81(m, =CH₂(allyl)), 5.87~5.66(m, HC=(allyl)). ¹³C NMR(ppm, CDCl₃); δ= -5.72(Si-Me(Gn+1)), 18.64, 17.42(CH₂(GO~Gn)), 21.41(CH₂(allyl)), 113.09 (=CH₂(allyl)), 134.71(HC=(allyl)).

9-BBN을 이용한 Gn의 hydroboration(GnB; AB,할 성). Gn 0.47 g(3.15 mmol)을 THF(15 mL)에 용해 시킨후 9-BBN(25 mL; 0.45 M solution in THF) 를 천천히 첨가하고 18시간 동안 교반하여 ¹H NMR 에 의해 allyl기의 -CH=CH₂ 기능기가 완전하게 반응 되었음을 확인한 다음 반응을 완결하였다. ¹H NMR(ppm, CDCl₃); δ=0.56(m, CH₂(G0~Gn)), 1.19 (m, CH₂-B), 1.86~1.47(m, CH(9BBN)). ¹³C NMR (ppm, CDCl₃); δ=18.03, 19.01, 30.95(CH₂), 19.09, 18.12(CH₂), 33.42, 33.20, 23.80, 23.17(9-BBN).

GnB의 oxidation(GnOH; AB,합성). THF 15 mL 에 녹아 있는 GnB 0.87 g(3.15 mmol)에 -10 °C에 서 6N NaOH 2.5 mL를 천천히 첨가한 다음 계속해 서 30% H₂O₂ 5 mL를 적가하여 10 °C에서 1시간 교반하고 이어서 상은에서 3시간 교반한 다음 THF층 을 분리하여 포화 NaCl 용액으로 여러번 세척하였다. THF층에 MgSO.를 가하여 건조시킨 다음 감압 증류 법에 의해 용매를 제거하였다. 'H NMR(ppm, DMSO-d₆); δ=0.55~0.39(m, CH₂(G0~Gn)). 1.35(m, CH₂-C-O), 3.31(m, CH₂-O), 4.39(s, OH). ¹³C NMR (ppm, DMSO-d₆); δ =18.55, 17.62(CH₂(GO ~ Gn)), 64.51, 27.52, 8.47(CH₂).

9-BBN을 이용한 Gn+1의 hydroboration(Gn+1B; AB3합성). GnB의 합성과 동일한 방법을 사용하였다. ¹H NMR(ppm, CDCl₃); δ=-0.04(s, Si-Me(Gn+1)), 0.56(m, CH₂(GO~Gn+1)), 1.19(m, CH₂-B), 1.36~ 1.86(m, CH(9-BBN)). ¹³C NMR(ppm, CDCl₃); δ= 8.03, 19.00, 30.97(CH₂), 19.09, 18.12(CH₂), 33.42, 33.20, 23.80, 23.17(9-BBN).

Gn+1B의 oxidation(Gn+1OH; AB,합섬). GnOH의 합성과 동일한 방법을 사용하였다. 'H NMR(ppm, DMSO-d₆); $\delta = -0.08(s, Si-Me(Gn+1)), 0.53 \sim 0.38(m,$ CH₂(G0~Gn)). 1.35(m, CH₂-C-O), 3.33(m, CH₂-O), $4.36(s, OH). ¹³C NMR(ppm, DMSO-d₆); <math>\delta = -5.21$ (Si-Me(Gn+1)), 18.71, 17.50(CH₂(G0~Gn)), 63.90, 26.92, 9.27(CH₂).

Gn+1P의 alkynylation(Gn+1P-PA; AB₃합성). 1.4 g(5.21 mmol)의 Gn+1P를 THF(25 mL)에 용해시킨 후 lithium phenylacethylide(15 mL: 1 M solution in THF)를 첨가하여 3시간 동안 환류 교반하였다. 'H NMR로 반응의 완결을 확인하고 감압 중류하여 용매 를 제거하였다. Toluene을 가하여 생성된 염을 제거하 였고 감압 중류법에 의해 용매를 제거하여 1.7 g의 노란색 고체인 Gn+1P-PA를 얻었다. 'H NMR(ppm, CDCl₃); δ=0.31(s, Si-Me(Gn+1)), 0.64(m, CH₂(G0~ Gn)), 0.81(m, CH₂(G0~Gn)), 1.18(m, CH₂(G0~ Gn)), 0.81(m, CH₂(G0~Gn)), 1.18(m, CH₂(G0~ Gn)), 1.51(m, CH₂(G0~Gn)), 7.45~7.38, 7.29~ 7.18(m, Ph(Gn+1P-PA)). ¹³C NMR(ppm, CDCl₃); δ=-1.24(Si-Me(Gn+1)), 20.29, 18.24, 17.69, 12.15, 16.41(CH₂(G0~Gn)), 106.20, 89.90(C=C), 122.48 (C_{aund}), 128.04(C_a), 128.63(C_p), 131.89(C_m).

Diallylmethylsilane의 hydrosilation(Gn; AB₂할 성). Triallylsilane의 hydrosilation과 동일한 방법사용. 1H NMR(ppm, CDCl³); δ=0.07 ~ 0.02(m, Si-Me(GO ~Gn)), 0.50 ~ 0.58(m, CH₂), 1.36 ~ 1.30(m, CH₂), 1.56~1.49(m, CH₂(allył)), 4.89~4.78(m, =CH₂ (allyl)), 5.84~5.67(m, CH=(allyl)). ¹³C NMR(ppm, CDCl₃); δ= -5.18, -5.31, -5.17(Si-Me(G0~Gn)), 18.90, 17.89 (CH₂), 22.23(CH₂(allyl)), 113.05(=CH₂(allyl)), 134.80 (HC=(allyl)).

Gn의 hydrosilation(**Gn+1P**; **AB**^{**1**}**업**). Triallylsilane의 hydrosilation과 동일한 방법 사용. 'H NMR

395

Gn+1P의 allylation(Gn+1; AB₂합성), Triallylsilane의 allylation과 동일한 방법 사용, ¹H NMR(ppm, CDCl₃); δ= -0.06(s, Si-Me(GO~Gn)), -0.01(s, Si-Me(Gn+1)), 0.65~0.58(m, CH₂(GO~Gn)), 1.33~1.31 (m, CH₂(GO~Gn)), 1.57~1.53(m, CH₂(allyl)), 4.89 ~4.81(m, =CH₂(allyl)), 5.84~5.67(m, HC=(allyl)). ¹³C NMR(ppm, CDCl₃); $\delta = -5.73$ (Si-Me(G0~Gn)), -5.01(Si-Me(Gn+1)), 18.94(CH₂(G0~Gn)), 21.44(CH₂ (allyl)), 113.02(=CH₂(allyl)), 134.83(HC=(allyl)).

결과 및 고찰

Hyperbranched polymer의 합성은 Scheme 2, 3에 서와 같이 allylsilane과 백금촉매(Pt/C) 존재 하에서 hydrosilation법을 이용하여 합성하였다. 즉, 한 개의 분자 안에 한 개의 Si-H 기능기와 2개의 allyl기를 가 진 AB2형과 3개의 allyl기를 가진 AB3형을 중심으로 연구하였다. AB2형 화합물 MeSiH(CH2CH=CH2)2을 백금촉매 하에서 hydrosilation 반응을 진행시킬 경우

Scheme 2. Hyperbranched Polymer AB₂,

Scheme 3. Hydrosilation of hyperbranched polymer AB₃.

고분자화 반응이 진행되지만 반응과정에서 1개의 aliyi 기는 전체적으로 남게되며 Si-H 기능기가 NMR 등에 의해서 확인되지 않을 때까지 반응을 진행시키면 반 응생성물인 AB;형 화합물은 선상구조를 가지지 못하 고 hyperbranched polymer로 성장하게 된다. AB,형 화합물(HSi(CH₂CH=CH₂)_i)의 경우도 AB,형 화합물의 제법과 동일한 방법에 의해서 제조되며 이 고분자 화 합물이 가지는 미반응 이중결합의 숫자는 전체적으로

Fig. 1. 13 C NMR spectroscopic view of AB₂ type hyperbranched polymers.

2배가 더 남아있는 확합물을 형성하게 된다(Scheme 3). AB:와 AB:형 hyperbranched polymer의 합성은 모두 백금촉매 하에서 톨루엔 용매 속에서 약 2일 정 도 환류 교반하여 Si-H의 흔적이 NMR에 의해 확인 되지 않을 때를 반응의 종말점으로 삼았다. AB:와 AB:형 화합물의 형성은 Fig. 1과 2에서와 같이 ¹³C NMR에 의해서 확인되었으며 반응생성물은 호름이 없 는 무색의 gel형 화합물로서 GPC에 의한 분자량이 측정에서 AB:인 경우와 AB:인 경우 모두 Mw/Mn의 비가 5이상을 가지는 화합물로서 고른 분자량 분포를 가지지 못하는 화합물로 확인되었다.

Hyperbranched polymer의 합성과 성장. AB,와 AB,형 hyperbranched polymer 화합물을 toluene 용 때 속에서 백금촉매 하에서 HSiMeCl₂와 반응시키면 AB,와 AB,형의 화합물의 형성과정에서 미반응으로 남 아있는 이중결합을 가진 가지(branch)와 hydrosilation 반응에 의하여 Gn+1P세대 화합물이 형성된다. 이 형 성과정은 NMR에 의해 ally1기의 특정기(-CH=CH;; 4.87, 5.72 ppm)가 없어지는 점까지 반응을 진행시키 면 이 과정에서 얻어진 Gn+1P세대 화합물은 Gn세대 화합물의 미반응 기능기가 가지는 이중결합의 전체가

Fig. 2. ¹³C NMR spectroscopic view of AB₃ type hyperbranched polymers.

제 1세대 화합물(Gn+1P)로 전개된다. Gn+1P는 Gn세 대에 비해 2배의 기능기(Si-Cl)를 가지며 비교적 점도 가 증가했음을 확인할 수 있었다. 이 반응 생성물은 백금촉매를 제거한 다음 다시 allylmagnesium bromide와의 반응에 의해 Gn+1세대를 형성하였다. Gn+1 세대 화합물은 Gn세대에 비해 ally기의 숫자가 2배로 중가한 화합물로서 정확한 ally기의 숫자는 확인할 수 없지만 이러한 반복된 과정을 계속하면 나뭇가지꼴 거 대분자로 성장이 가능하며 Gn+1P세대의 모든 가지는 Gn+1세대로 전환 되었음이 NMR에 의해서 확인 되었 다. Gn+1세대 hyperbranched polymer 화합물과 HSi-MeCl₂의 반응에서는 Gn+1세대의 모든 allyl기가 hydrosilation에 의해 Gn+2P세대를 완전하게 형성하지 못하는 현상을 확인되었다. 따라서, AB2와 AB3형 화 합물의 나뭇가져꼴 거대분자로의 성장은 Gn+1세대에 서 hydrosilation 반응에 의해 Gn+2P세대로의 전개가 일정하게 이루어지지 않는 한계세대임이 확인되었다. AB,와 AB,형 화합물의 형성과정은 모두 NMR에 의 해 추적할 수 있었으며 Fig. 1과 2에서와 같다.

Scheme 4. Preparation of Polysilol.

Fig. 3. ¹³C NMR spectrum of Polysilol GnOH(t)(down) and Gn+1OH(t)(up).

Polysilol의 제조, AB,와 AB,형의 Gn세대 화합물 이중결합은 9-BBN과 hydroboration 반응에 의해 Scheme 4와 같은 GnB형 화합물에 형성되고 있음이 확인되었다. GnB형 화합물은 공기 중에서 불안정하여 염기성 용액에서 산화시킨 결과 octanediol과 hyperbranched polymer의 이중결합이 모두 OH 기를 terminal에 가지고 있는 polysilol이 형성되었음이 NMR에 의해서 확인되었다(Fig. 3). 반응 과정에서 얻어진 부 산물인 옥탄디올은 고진공에 의해서 제거할 수 있었

으나 생성물의 정제는 silica gel 등을 이용한 column chro-matograpy법에 의해서 정제되지 않았다. Polysilol 은 한 개의 분자안에 많은 수의 OH 기능기를 가져므 로 많은 응용 가능성이 기대된다.

본 연구는 산학협동재단 연구비 지원(1997)과 동아대 학교 교비연구비지원(1998)에 의해서 이루어진 연구입 니다.

인 용 문 헌

- 1. Dendrimer는 그리스어의 δενδρον(tree)과 μεροσ (teil)의 합성어이며 같은 의미를 가지는 리틴어의 표현으 로는 arborol이 있다. dendrimer의 다른 표현으로는 cascade molecule, star-bust dendrimer 등이 있으며 같은 의미로 사용된다.
- 2. (a) D. A. O' Sullivan C&EN 1993, 20. (b) R. Dagani C&EN 1993, 28. (c) Nachr. Chem. Techn. Lab. 1994, 42, 155. (d) T. K. Lindhorst Nachr. Chem. Tech. Lab. 1996, 44, 1073.
- 3. 김정균외 독일첨단과학기술개발 동향보고서(화학부문), 한국과학재단, 대전, 1998
- 4. (a) J. Issberner; R. Moore; F. Vögtle Angew. Chem. 1994, 107, 2507. Angew. Chem. Int. Ed. Engl. 1994, 33, 2413, (b) G. R. Newkome; C. N. Moorefield, F. Vögtle Dendritic Molecules: VCH: Weinheim, 1996.
- 5. G. R. Newkome; C. N. Moorefield; G. R. Backer

Aldrichimica Acta 1992, 25, 31.

- M. K. Lothian-Tomalia; D. M. Hedstrand; D. A. Tomalia, A. B. Padias; H. K. Hall, Jr. *Tetrahedron* 1997, 53, 15495.
- J. M. J. Fréchet; C. J. Hawker; K. L. Wooley Pure Appl. Chem. 1994, A31, 11, 1627.
- G. R. Newkome Advances in dendritic macromolecules Vol. 3; JAI Press: London, 1996.
- (a) P. Lange; A. Schier; H. Schmidbaur Inorg. Chem. 1996, 35, 637. (b) P. Lange; A. Schier; H. Schmidbaur Inorg. Chem. Acta 1995, 235, 263.
- S. Achar; J. J. Vital; R. J. Pudaddephatt Organometallics 1996, 15, 43.
- (a) G. Denti; S. Campagna; S. Serroni; M. Ciano; V. Balzani J. Am. Chem. Soc. 1992, 114, 2944. (b) S. Campagna; G. Denti; G. Serroni; M. Ciano; A. Juris; V. Balzani Inorg. Chem. 1992, 31, 2982. (c) A. Juri; V. Balzani; S. Campagna; G. Denti; S. Serroni; G. Frei; H. U. Güdel Inorg. Chem. 1994, 33, 1491.
- 12. F. Zeng; S. C. Zimmerman Chem. Rev. 1997, 97, 1682.
- (a) A. W. van der Made; P. W. N. M. van Leeuwen; J. C. de Wilde; R. A. C. Brandes Adv. Mater. 1993, 5, 466.
 (b) A. W. van der Made; P. W. N. M. van Leeuwen J. Chem. Soc., Chem. Commun. 1992, 1400.
- 14. (a) H. Frey; K. Lorenz; C. Lach Chem. Unser. Zeit

1996, 30, 75. (b) K. Lorenz; R. Mülhaupt, H. Frey *Macromolecules* **1995**, 28, 6657. (c) K. Lorenz; D. Hölter; B. Stühn; R. Mülhaupt; H. Frey *Adv. Mater.* **1996**, 8, 414.

- (a) D. Seyferth; D. Y. Son; A. L. Rheingold; R. L. Ostrander Organometallics 1994, 13, 2682.
 (b) D. Seyferth; T. Kugita; A. L. Rheingold; G. P. A. Yab Organometallics 1995, 14, 5362.
- 16. A. Sekiguchi; M. Nanjo; C. Kabuto; H. Sakurai J. Am. Chem. Soc. 1995, 117, 4195.
- 17. Y. H. Kim Adv. Mater. 1992, 4, 764.
- V. Swali; N. J. Wells; J. Langley; M. Bradley J. Org. Chem. 1997, 62, 4902.
- (a) C. Kim; E. Park J. Korean Chem. Soc. 1998, 42, 277. (b) C. Kim; K. An J. Organomet. Chem. 1997, 547, 55. (c) C. Kim; Y. Jeong; I. Jung J. Organomet Chem. 1998, 570, 9. (d) C. Kim: M. Kim J. Organomet Chem. 1998, 553, 43. (e) C. Kim; A. Kwon Main Group Metal Chem. 1998, 21, 9. (f) C. Kim; Y. Jeong Main Group Metal Chem. 1998, 21, 593. (g) C. Kim; S. Choi Main Group Metal Chem. 1997, 20, 143. (h) C. Kim; A. Kwon Synthesis 1998, 105. (i) C. Kim Inorg Chem. Commun. 1998, 1, 427.
- C. Lach; P. Müller; H. Frey; R. Mülhaut Macromol. Rapid Commun. 1997, 18, 253.