• Title/Summary/Keyword: Polymer coating

Search Result 791, Processing Time 0.026 seconds

In vitro Cytotoxicity Evaluation of Polydimethylsiloxane as a Biosensor Coating Material (바이오센서 코팅용 Polydimethylsiloxane의 생체외 세포독성 평가)

  • Park, Subeom;Lee, Jonghwan;Na, Kyunga;Jung, Jaeyeon;Kim, Myungjin;Park, Sungjae;Hyun, Jinho
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • PDMS was selected for a coating material of implantable biosensors and the cytotoxicity of extracts released from a polymer was evaluated using ISO 10993-5, Biological evaluation of medical devices-Part 5: Tests for in vitro cytotoxicity. Organo-tin was used as a positive control and a medium without serum was used as a negative control. Materials extract were prepared by incubating specimens in RPMI medium without serum ($125{\mu}L/cm^2$) for 24 h, 1 week and 6 weeks at $38^{\circ}C$. The evaluation of cytotoxicity was performed by two different methods : 1) seeding cells with extracts at the beginning 2) incubating extracts with cell sheets already formed on the plate. Both cell morphology and MTT numerical data were shown for the confirmation of cytotoxicity and cell spreading on the surface of PDMS.

  • PDF

An Experimental Study for Failure Behavior of Composite Beams with DFRCC and FRP Plank with Rib (리브를 갖는 FRP 판과 고인성섬유보강콘크리트로 이루어진 합성보의 파괴거동에 대한 실험적 연구)

  • Kang, Ga-Ram;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.16-23
    • /
    • 2016
  • DFRCC (ductile fiber reinforced cementitious composites), which are a significantly improved ductile material compared to conventional concrete, were evaluated as a new construction material with a high potential applications to concrete structures for a range of purposes. In this study, experiments on the failure behavior of composite beams with a DFRCC and FRP (fiber reinforced polymer) plank with a rib used as permanent formwork and tensile reinforcement were carried out. A normal concrete and a fiber reinforced concrete with PVA series of RF4000 and the PP series of PP-macro were used for comparison, and each RF4000+RSC15 and PP-macro+RSC15 was tested by producing composite beams. The experimental results of the FRP plank without a sand coating showed that sliding failure mode between the FRP plank and concrete started from a flexural crack at the beam center; therefore it is necessary for the FRP plank to be coated with sand and the effect of the fiber to failure mode did not appear to be huge. The experiment of the FRP plank with a sand coating showed that both 1200mm and 2000mm allowed sufficient bonding between the concrete and FRP plank. The maximum load of the fiber reinforced concrete was higher than that of normal concrete and the case which a series of PP fiber was mixed showed the highest value. The crack latency caused by the fibers led to composite action with a FRP rib.

Haze Characteristics of Mica Coated with Magnesium Oxide (산화마그네슘을 코팅한 마이카의 헤이즈 특성)

  • Kang, Kuk-Hyoun;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.888-894
    • /
    • 2015
  • Inorganic composite particles have excellent physical and chemical characteristics and have been applied in various industries. Recently, many studies have examined the optical properties, such as light scattering, refraction, transmission characteristics, by coating organic-inorganic materials on a substrate, such as mica. Mica is widely applied as a pigment, plastics, painted products, and ceramics because of its high chemical stability, durability and non-toxicity. Magnesium oxide has a range of properties, such as high light transmittance, corrosion resistance and non-toxicity, and it is used as an optical material and polymer additives. To use the optical properties of mica and magnesium oxide, mica was coated with magnesium hydroxide by a dissolution and recrystallization process. In this study, the optimal conditions for the haze value of the particles were found by adjusting the amount of precursors and pH. Magnesium hydroxide layers were formed on the surfaces of mica and converted to MgO after calcination at $400^{\circ}C$ for 4 h. The results showed that the value of MgO-coated mica haze can be controlled easily by the amount of the magnesium hydroxide and pH. The optical properties of the inorganic composite powder were analyzed using a hazemeter and the highest haze value was 85.92 % at pH 9. The physicochemical properties of the synthesized composite was analyzed by SEM, XRD, EDS, and PSA.

Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps (PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가)

  • Cha, Nam-Goo;Park, Chang-Hwa;Cho, Min-Soo;Kim, Kyu-Chae;Park, Jin-Goo;Jeong, Jun-Ho;Lee, Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

The Permeation Behaviors of $H_2S/CH_4$ using Polyimide Hollow Fiber Membranes (폴리이미드 중공사막을 이용한 $H_2S/CH_4$ 투과거동에 관한 연구)

  • Lee, Hyung-Keun;An, Young-Mo;Kim, Dae-Hoon;Jo, Hang-Dae;Seo, Yong-Seog;Park, Yeong-Seong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.261-267
    • /
    • 2009
  • Polyimide which is the glassy polymer has high chemical resistance, thermal stability and high mechanical property. In this study, the polyimide hollow fiber membranes were prepared by the dry-jet wet phase inversion in order to investigate the permeation porperties of the $H_2S$ and $CH_4$. The morphology of prepared hollow fiber membranes and their permeation behaviors of $H_2S$ and $CH_4$ before and after silicon coating were evaluated. The permeance of $H_2S$ and $H_2S/CH_4$ selectivity increased due to plasticization with increasing the feed pressure. The permeance of KSM03b and selectivity of KSM03d were highest among the three type membranes used this experiments. The permeance decreased but the $H_2S/CH_4$ selectivity increased with increasing the air gap. The permeance reduced after silicon coating. However, the selectivity increased and the selectivity of KSM03d was 275 at 7 atm.

Synthesis of Silicon-Carbon by Polymer Coating and Electrochemical Properties of Si-C|Li Cell (고분자 도포를 이용한 실리콘-탄소의 합성 및 Si-C|Li Cell의 전기화학적 특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;An, Kay-Hyeok;Min, Byung-Chul;Choi, Im-Goo;Park, Chul-Wan;Lee, Kyeong-Jik;Moon, Seong-In;Yun, Mun-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.107-112
    • /
    • 2006
  • Si-C composites were prepared by the carbonization of silicon powder covered by polyaniline(PAn). Physical and electrochemical properties of the Si-C composites were characterized by the particle size analysis, X-ray diffraction technique, scanning electron microscope, and electrochemical test of battery. The average particle size of the Si was increased by the coating of PAn and somewhat reduced by the carbonization to give silicone-carbon composites. XRD analysis' results were confirmed co-existence of crystalline silicon and amorphous-like carbon. SEM photos showed that the silicon particle were well covered with carbonacious materials depend on the PAn content. Si-C|Li cells were fabricated using the Si-C composites and were tested using the galvanostatic charge-discharge test. Si-C|Li cells gave better electrochemical properties than that of Si|Li cell. Si-C|Li cell using the Si-C from HCl undoped PAn Precursor showed better electrochemical properties than that from HCl doped PAn Precursor. Using the electrolyte containing FEC as an additive, the initial discharge capacity was increased. After that the galvanostatic charge-discharge test with the GISOC(gradual increasing of the state of charge) condition was carried out. Si-C(Si:PAn:50:50 wt. ratio)|Li cell showed 414 mAh/g of the reversible specific capacity, 75.7% of IIE(initial intercalation efficiency), 35.4 mAh/g of IICs(surface irreversible specific capacity).

Effect of Polymer Post-treatment on the Durability of 3D-printed Cement Composites (3D 프린터로 출력된 시멘트 복합체의 내구성에 미치는 폴리머 후처리의 영향)

  • Seo, Ji-Seok;Hyun, Chang-Jin;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.20-29
    • /
    • 2022
  • In this study, in order to improve the durability of the cement composite printed with the ME type 3D printer, PDMS, sodium silicate, and a surface hardener were employed. Post-treatment was performed on 3D-printed cement composite by coating after immersion, and the degree of improvement in durability was evaluated. As a result, in all evaluations, the durability performances of the post-processed specimens were improved compared to those of the plain specimens. Water absorption resistance, chloride penetration resistance, and carbonation resistance of the PDMS treated specimens were improved by 36.3 %, 77.1 %, and 50.4 % when compared to plain specimens. Freeze-thaw resistance of the specimens treated with sodium silicate was found to be the most excellent, with an average enhancement of 47.5% compared to plain specimens. It was found that PDMS was the most efficient post-treatment materials for 3D-printed cement composite. However, as suggested in this study, the post-treatment method by coating after immersion may not be applicable to cement composite structures printed with a 3D printer in field. Therefore, a follow-up study needs to be preformed on the durability enhancing materials suitable for 3D printing.

Recent Research Trends in Antibacterial, Antifungal, and Antiviral Active Packaging (항균, 항진균 및 항바이러스 액티브 패키징의 최근 연구 동향)

  • Siyeon Park;Hani Ji;Jieun Choi;Seulgi Imm;Yoonjee Chang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.15-25
    • /
    • 2023
  • Since the COVID-19 crisis, the use of disposable packaging materials and delivery services, which raise environmental and social issues with waste disposal, has significantly increased. Antimicrobial active packaging has emerged as a viable solution for extending the shelf-life of foods by minimizing microbial growth and decomposition. In this review article, we provide a comprehensive overview of current research trends in antimicrobial active film and coating published over the last five years. First, we introduced various polymer materials such as film and coating that are used in active packaging. Next, various types of antimicrobial (antibacterial, antifungal, and antiviral) packaging including essential oil, extracts, biological material, metal, and nanoparticles were introduced and their activities and mechanisms were discussed. Finally, the current challenges and prospects were discussed. Overall, this review provides insights into the recent advancements in antimicrobial active packaging research and highlights the potential of the technology to enhance food safety and quality.

Research on the Development of Microneedle Arrays Based on Micromachining Technology and the Applicability of Parylene-C (미세가공 기술 기반의 마이크로니들 어레이 개발 및 패럴린 적용 가능성에 관한 연구)

  • Dong-Guk Kim;Deok-kyu Yoon;Yongchan Lee;Min-Uk Kim;Jihyoung Roh;Yohan Seo;Kwan-Su Kang;Young Hun Jeong;Kyung-Ah Kim;Tae-Ha Song
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.404-413
    • /
    • 2023
  • In this research, we studied the development of a SUS304 microneedle array based on microfabrication technology and the applicability of Parylene-C thin film, a medical polymer material. First of all, four materials commonly used in the field of medical engineering (SUS304, Ti, PMMA, and PEEK) were selected and a 5 ㎛ Parylene-C thin film was deposited. The applicability of Parylene-C coating to each material was confirmed through SEM analysis, contact angle measurement, surface roughness(Ra) measurement, and adhesion test according to ASTM standards for each specimen. Parylene-C thin film was deposited based on chemical vapor deposition (CVD), and a 5 ㎛ Parylene-C deposition process was established through trial and error. Through characteristic experiments to confirm the applicability of Parylene-C, SUS304 material, which is the easiest to apply Parylene-C coating without pretreatment was selected to develop a microneedle array based on CNC micromachining technology. The CNC micromachining process was divided into a total of 5 steps, and a microneedle array consisting of 19 needles with an inner diameter of 200 ㎛, an outer diameter of 400 ㎛, and a height of 1.4 mm was designed and manufactured. Finally, a 5 ㎛ Parylene-C coated microneedle array was developed, which presented future research directions in the field of microneedle-based drug delivery systems.

Process Optimization for the Industrialization of Transparent Conducting Film (투명 전도막의 산업화를 위한 공정 최적화)

  • Nam, Hyeon-bin;Choi, Yo-seok;Kim, In-su;Kim, Gyung-jun;Park, Seong-su;Lee, Ja Hyun
    • Industry Promotion Research
    • /
    • v.9 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In the rapidly advancing information society, electronic devices, including smartphones and tablets, are increasingly digitized and equipped with high-performance features such as flexible displays. This study focused on optimizing the manufacturing process for Transparent Conductive Films (TCF) by using the cost-effective conductive polymer PEDOT and transparent substrate PET as alternatives to expensive materials in flexible display technology. The variables considered are production speed (m/min), coating maximum temperature (℃), and PEDOT supply speed (rpm), with surface resistivity (Ω/□) as the response parameter, using Response Surface Methodology (RSM). Optimization results indicate the ideal conditions for production: a speed of 22.16 m/min, coating temperature of 125.28℃, and PEDOT supply at 522.79 rpm. Statistical analysis validates the reliability of the results (F value: 18.37, P-value: < 0.0001, R2: 0.9430). Under optimal conditions, the predicted surface resistivity is 145.75 Ω/□, closely aligned with the experimental value of 142.97 Ω/□. Applying these findings to mass production processes is expected to enhance production yields and decrease defect rates compared to current practices. This research provides valuable insights for the advancement of flexible display manufacturing.