• Title/Summary/Keyword: Polymer cathode

Search Result 237, Processing Time 0.028 seconds

The Study on Structural Change and Improvement of Electrochemical Properties by Co-precipitation Condition of Li[Ni0.8Co0.15Al0.05]O2 Electrode (Li[Ni0.8Co0.15Al0.05]O2 전극의 공침 조건을 통한 구조적 변화와 전기적 특성의 향상 고찰)

  • Im, Jung-Bin;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.98-103
    • /
    • 2011
  • [ $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ ]cathode material for lithium secondary battery is obtained using co-precipitation method. To determine the optimal metal solution concentration value, the CSTR coprecipitation was carried out at various concentration values(1-2 mol/L). The surface morphology of coated samples was characterization by SEM(scanning electron microscope) and XRD (X-Ray Diffraction)analyses. Impedance analysis and cyclic voltammogram presented that internal resistance of the cell was dependent upon the concentration of metal solution. such data is very helpful in determining the optimal content of metal solution concentration to enhancing electrochemical property by adjusting powder size distribution and crystal structure.

The Effect of a Bypass Flow Penetrating through a Gas Diffusion Layer on Performance of a PEM Fuel Cell (가스확산층을 통과하는 반응가스 우회유동이 고분자 연로전지의 성능에 미치는 영향)

  • Cho, Choong-Won;Ahn, Eun-Jin;Lee, Seung-Bo;Lee, Won-Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.147-151
    • /
    • 2007
  • A serpentine channel geometry often used in a polymer electrolyte membrane fuel cell has a strong pressure gradient between adjacent channels in specific regions. The pressure gradient helps some amount of reactant gas penetrate through a gas diffusion layer(GDL). As a result, the overall serpentine flow structure is slightly different from intention of a designer. The purpose of this paper is to examine the effect of serpentine flow structure on current density distribution. By using a commercial code, STAR-CD, a numerical simulation is performed to analyze the fuel cell with relatively high aspect ratio active area. To increase the accuracy of the numerical simulation, GDL permeabilities are measured with various compression conditions. Three-dimensional flow field and current density distribution are calculated. For the verification of the numerical simulation results, water condensation process in the cathode channel is observed through a transparent bipolar plate. The result of this study shows that the region of relatively low current density corresponds to that of dropwise condensation in cathode channels.

  • PDF

Development of Zinc Air Battery for Cellular Phone (휴대전화기용 아연공기전지 개발)

  • 엄승욱;김지훈;문성인;윤문수;김주용;박정식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.936-941
    • /
    • 2004
  • In recent years, the rapid growth of portable electronic devices requires the high-energy density characteristics of batteries. Zinc air batteries have specific capacity as high as 820mAh/g. However, Zinc air batteries used for hearing aid applications only so far, because the atmosphere could affect it, and it has weakness in the rate capability. However, recent developments of electrode manufacturing technologies made us to overcome that weakness. And the efforts of applying zinc air batteries to portable electronic devices, especially in cellular phone application have been increased. In this paper, the effects of conducting material and polymer binder in cathode on the electrochemical characteristics were investigated. Our research team succeeded in producing 2.4Ah class zinc air battery for cellular phone application. Its volumetric energy density was 920 wh/l, and gravimetric energy density was 308 wh/kg. The volumetric energy density of our zinc air battery is two times higher than one of lithium secondary battery, and three times higher than that of alkaline manganese battery.

Chlor-alkali Membrane Process and its Prospects (클로알칼리 멤브레인법과 전망)

  • Park, In Kee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.203-215
    • /
    • 2015
  • Chlor-alkali (CA) membrane process is based on salined water electrolysis employing cation condutive polymer electrolytes, which has been used for the conventional production of both sodium hydroxide and chlorine gas. The CA membrane process has advantages such as relatively low environmental impacts and fairly reduced energy consumption, when compared with diaphragm and mercury process. In this review articles, basic concepts, fundamental characteristics, key technologies of CA membrane process are dealt with in detail. In addition, advanced technologies associated with CA membrane process are described. They include zerogap and oxygen depolarized cathode technologies to improve energy efficiency during the electrolysis. Carbon dioxide mineralization technology will also be introduced as an example of hybridization with different technologies. Finally, current market trend in CA membrane process will be presented.

Recent Trend of Lithium Secondary Batteries for Cellular Phones (최근 휴대폰용 배터리의 기술개발 동향)

  • Lee, H.G.;Kim, Y.J.;Cho, W.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In this review article, we are going to explain the recent development of lithium secondary batteries for a cellular phone. There are three kinds of rechargeable batteries for cellular phones such as nickel-cadmium, nickel-metal hydride, and lithium ion or lithium ion polymer. The lithium secondary battery is one of the most excellent battery in the point of view of energy density. It means very small and light one among same capacity batteries is the lithium secondary battery. The market volume of lithium secondary batteries increases steeply about 15% annually. The trend of R&D is focused on novel cathode materials including $LiFePO_4$, novel anode materials such as lithium titanate, silicon, and tin, elecrolytes, and safety insurance.

Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Polyaniline Composites as an Electrode for Li-ion Batteries

  • Chung, Young-Min;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1733-1737
    • /
    • 2009
  • A new cathode material based on Li$Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCA)/polyaniline (Pani) composite was prepared by in situ self-stabilized dispersion polymerization in the presence of LNCA. The materials were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties including galvanostatic charge-discharge ability, cyclic voltammetry (CV), capacity, cycling performance, and AC impedance were measured. The synthesized LNCA/Pani had a similar particle size to LNCA and exhibited good electrochemical properties at a high C rate. Pani (the emeraldine salt form) interacts with metal-oxide particles to generate good connectivity. This material shows good reversibility for Li insertion in discharge cycles when used as the electrode of lithium ion batteries. Therefore, the Pani coating is beneficial for stabilizing the structure and reducing the resistance of the LNCA. In particular, the LNCA/Pani material has advantageous electrochemical properties.

The Characteristics of Vanadium based Composite Cathode for Lithium Secondary Battery (리튬이차전지용 바나듐계 복합양극의 특성)

  • Kim Jong-Jin;Son Won-Keun;Kim Jae-Yong;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.61-65
    • /
    • 1999
  • A new treatment of $LiV_3O_8$ has been proposed for improving its electrochemical behavior as a cathode material for secondary lithium batteries. Lithium trivanadate, $LiV_3O_8$, can be prepared in a finely dispersed form by dehydration of aqueous lithium trivanadate gels. The ultrasonic treatment method for Liv30s has been examined in comparison with $LiV_3O_8$ prepared by solutionmethod. The ultrasonically treated products in water were characterized by XRD (X-ray diffractometry), TGA (thermogravimetric analysis) and SEM (scanning electron microscopy). These measurements showed that the ultrasonic treatment process of aqueous $LiV_3O_8$ caused a decrease in crytallinity and considerable increased in specific surface area and interlayer spacing. The product, ultrasonically treated in water for 2 h, showed a high initial discharge capacity and was charge-discharge cycled without large capacity loss. The ultrasonic treated Liv30s can improve not only the specific capacity, but also the cycling behavior

Electrospinning Method-based CNF Properties Analysis and Its Application to Electrode in Electrolysis Process (lectrospinning Method 기반 CNF의 물성분석과 전기분해 공정에서 전극으로의 응용)

  • Hwang, In-Hyuck;Choi, Sung-Yeol;Lee, Sang Hyun;Lee, Ye-Hwan;Lee, Sang Moon;Kim, Sung-Chul;Kim, Sung Su
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.257-262
    • /
    • 2017
  • In this study, CNF (carbon nanofiber) was prepared with different process variables of electrospinning method. Morphology of CNF was observed by SEM, and main parameters to form the CNF were applied voltage, TCD, polymer concentration and heat treatment condition. Comparison of toluene removal efficiency, as applying the prepared CNF to electrodes of an electrolysis process, showed the direct effect of cathode on electrolysis as well as anode.

The Electrochemical Performance Evaluation of PBI-based MEA with Phosphoric Acid Doped Cathode for High Temperature Fuel Cell (인산 도핑 PBI계 막전극접합체를 적용한 고온형 수소연료전지의 전기화학적 내구성 연구)

  • RHEE, JUNKI;LEE, CHANMIN;JEON, YUKWON;LEE, HONG YEON;PARK, SANG SUN;KIM, TAE YOUNG;KIM, HEESEON;SONG, SOONHO;PARK, JUNG OCK;SHUL, YONG-GUN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.5
    • /
    • pp.471-480
    • /
    • 2017
  • A proton exchange membrane fuel cell (PEMFC) operated at $150^{\circ}C$ was evaluated by a controlling different amount of phosphoric acid (PA) to a membrane-electrode assembly (MEA) without humidification of the cells. The effects on MEA performance of the amount of PA in the cathode are investigated. The PA content in the cathodes was optimized for higher catalyst utilization. The highest value of the active electrochemical area is achieved with the optimum amount of PA in the cathode confirmed by in-situ cyclic voltammetry. The current density-voltage experiments (I-V curve) also shows a transient response of cell voltage affected by the amount of PA in the electrodes. Furthermore, this information was compared with the production variables such as hot pressing and vacuum drying to investigate those effect to the electrochemical performances.

Increase in Discharge Capacity of Li Battery Assembled with Electrochemically Prepared V2O5/polypyrrole-composite-film Cathode

  • Kim, You-Na;Kim, Joo-Seong;Thieu, Minh-Triet;Dinh, Hung-Cuong;Yeo, In-Hyeong;Cho, Won-Il;Mho, Sun-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3109-3114
    • /
    • 2010
  • Flexible composite films of $V_2O_5$ and conductive polypyrrole ($V_2O_5$/PPy) were grown by facile electrochemical polymerization, wherein an anodization potential was applied to the substrate electrode in an electrolyte solution containing pyrrole monomer and dispersed $V_2O_5$ particles. The coating of polypyrrole (PPy) on the surface of $V_2O_5$ particles was induced by the oxidative catalytic action of $V_2O_5$ during the electrochemical polymerization of pyrrole. PPy in the composite film connects the isolated $V_2O_5$ particles. This results in the formation of conductive networks in the composite film cathode, thereby enhancing the Li+ ion diffusion to the surface of the isolated $V_2O_5$ particles and thus increasing the accessibility of the $Li^+$ ions. The specific capacity tests of the Li rechargeable batteries revealed that the discharge capacity of this composite film cathode was higher, i.e., $497\;mAhg^{-1}$, than that of $V_2O_5$/PPy powder or pristine $V_2O_5$.