DOI QR코드

DOI QR Code

Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Polyaniline Composites as an Electrode for Li-ion Batteries

  • Published : 2009.08.20

Abstract

A new cathode material based on Li$Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCA)/polyaniline (Pani) composite was prepared by in situ self-stabilized dispersion polymerization in the presence of LNCA. The materials were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties including galvanostatic charge-discharge ability, cyclic voltammetry (CV), capacity, cycling performance, and AC impedance were measured. The synthesized LNCA/Pani had a similar particle size to LNCA and exhibited good electrochemical properties at a high C rate. Pani (the emeraldine salt form) interacts with metal-oxide particles to generate good connectivity. This material shows good reversibility for Li insertion in discharge cycles when used as the electrode of lithium ion batteries. Therefore, the Pani coating is beneficial for stabilizing the structure and reducing the resistance of the LNCA. In particular, the LNCA/Pani material has advantageous electrochemical properties.

Keywords

References

  1. Matsuhiko, N.; Satoru, Y.; Takashi, I. Chem. Commun.1998, 1631
  2. Li, W.; Reimers, J. N.; Dhan, J. R. Phys. Rev. 1992, B46, 3236
  3. Thackeray, M. M.; David, W. I. F.; Bruce, P. G. Mater. Res. Bull. 1983, 18, 461 https://doi.org/10.1016/0025-5408(83)90138-1
  4. Delmas, C.; Saadoune, I.; Rougier, A. J. Power Sources 1993, 43, 595
  5. Cho, J.; Park, B. J. Power Sources 2001, 92, 359
  6. Liu, H.; Li, J.; Zhang, Z. Electrochim. Acta 2004, 49, 1151 https://doi.org/10.1016/j.electacta.2003.11.001
  7. Kim, J.; Hong, Y.; Ryu, K. S. Electrochem. Solid State Lett. 2006, 9, A19 https://doi.org/10.1149/1.2135427
  8. Matsumoto, K.; Kuzuo, R.; Takeya, K. J. Power Sources 1999, 81, 558 https://doi.org/10.1016/S0378-7753(99)00216-5
  9. Chowdari, B. V. R.; Subba Rao, G. V.; Chow, S. Y. Solid State Ionics 2001, 140, 55 https://doi.org/10.1016/S0167-2738(01)00686-5
  10. Naghash, A. R.; Lee, J. Y. Electrochim. Acta 2001, 46, 2293 https://doi.org/10.1016/S0013-4686(01)00452-2
  11. Mosqueda, Y.; Perez-Cappe, E.; Arana, J. J. Solid State Chem. 2006, 179, 308 https://doi.org/10.1016/j.jssc.2005.09.030
  12. Ruiz-Hitzky, E. Adv. Mater. 1993, 5, 334 https://doi.org/10.1002/adma.19930050503
  13. Gomez-Romeo, P. Adv. Mater. 2001, 13, 163 https://doi.org/10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.0.CO;2-U
  14. Tang, B. Z.; Geng, Y.; Lam, J. W. Y. Chem. Mater. 1999, 11, 1581 https://doi.org/10.1021/cm9900305
  15. Yoneyama, H.; Kuwabata, S. J. Chem. Soc. Chem. Commun. 1991, 986
  16. Kuwabata, S.; Masui, S.; Tomiyori, H. Electrochim. Acta 2000, 46, 91 https://doi.org/10.1016/S0013-4686(00)00565-X
  17. MacDiarmid, A. G. Angew. Chem. Int. Ed. 2001, 40, 2581 https://doi.org/10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
  18. Pei, Q.; Yu, G.; Zhang, C. Science 1995, 269, 1086 https://doi.org/10.1126/science.269.5227.1086
  19. Cao, Y.; Smith, P.; Heeger, A. G. US. Pat. 1993, 5232631
  20. Ramachandran, K.; Christopher, O.; Lerner, M. Mater. Res. Bull. 1996, 31, 767 https://doi.org/10.1016/0025-5408(96)00070-0
  21. Prevost, V.; Petit, A.; Pla, F. Synth. Met. 1999, 104, 79 https://doi.org/10.1016/S0379-6779(99)00009-0
  22. Ohuzuku, T.; Ueda, A.; Nagayama, M. J. Electrochem. Soc. 1993, 140, 1862 https://doi.org/10.1149/1.2220730
  23. Reimers, J. N.; Rosen, E.; Jones, C. D. Solid State Ionics 1993, 61, 335 https://doi.org/10.1016/0167-2738(93)90401-N
  24. Klong, H. P.; Alexander, L. E. X-ray Diffraction Procedures for Crystalline and Amorphous Materials; Wiley: New York, 1954
  25. Cho, J.; Park, B. J. Power Sources 2001, 92, 35 https://doi.org/10.1016/S0378-7753(00)00499-7
  26. Kavan, L.; Gratzel, M. Electrochem. Solid State Lett. 2002, 5, A39 https://doi.org/10.1149/1.1432783
  27. Chen, C. H.; Liu, J.; Amine, K. J. Power Sources 2001, 96, 321 https://doi.org/10.1016/S0378-7753(00)00666-2

Cited by

  1. Enhanced cyclic performance of MgF2-coated Li[Ni0.2Li0.2Mn0.6]O2 nanoparticle cathodes in full lithium ion cells vol.33, pp.3-4, 2014, https://doi.org/10.1007/s10832-014-9968-3
  2. Novel Method to Synthesize Highly Conducting Polyaniline/ Nickel Sulfide Nanocomposite Films and the Study of Their Structural, Magnetic, and Electrical Properties vol.50, pp.8, 2014, https://doi.org/10.1109/TMAG.2014.2320448
  3. Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer vol.161, pp.1, 2014, https://doi.org/10.1149/2.073401jes
  4. The effect of molecular structure, band gap energy and morphology on the dc electrical conductivity of polyaniline/aluminium oxide composites vol.19, pp.sup8, 2015, https://doi.org/10.1179/1432891715Z.0000000001688
  5. NCA cathode material: synthesis methods and performance enhancement efforts vol.5, pp.12, 2018, https://doi.org/10.1088/2053-1591/aae167
  6. Polymer coating of vanadium oxide nanowires to improve cathodic capacity in lithium batteries vol.1, pp.27, 2009, https://doi.org/10.1039/c3ta11049d
  7. Surface Surgery of the Nickel-Rich Cathode Material LiNi0.815Co0.15Al0.035O2: Toward a Complete and Ordered Surface Layered Structure and Better Electrochem vol.8, pp.50, 2009, https://doi.org/10.1021/acsami.6b11431
  8. Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries vol.2019, pp.None, 2009, https://doi.org/10.1155/2019/2730849
  9. Synthesis of $$\hbox {Li}_{{x}}(\hbox {Ni}_{0.80}\hbox {Co}_{0.15}\hbox {Al}_{0.05})\hbox {O}_{{2}}$$ cathodes with deficient and excess lithium using an ultrasonic sound-assisted co-precipitation met vol.42, pp.5, 2009, https://doi.org/10.1007/s12034-019-1896-z
  10. Improving the cycling performance of LiNi0.8Co0.15Al0.05O2 cathode materials via zirconium and fluorine co-substitution vol.806, pp.None, 2009, https://doi.org/10.1016/j.jallcom.2019.07.230
  11. LiNi0.8Co0.15Al0.05O2 양극활물질의 전기화학적 특성 향상을 위한 MgF2 표면처리 효과 vol.58, pp.1, 2009, https://doi.org/10.9713/kcer.2020.58.1.52
  12. Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가 vol.59, pp.1, 2009, https://doi.org/10.9713/kcer.2021.59.1.42
  13. Prospect of Poly(2-chloroaniline)-Nanocomposite-Silica as Anode in Li-Ion Coin Cell vol.33, pp.11, 2009, https://doi.org/10.14233/ajchem.2021.23371