Browse > Article
http://dx.doi.org/10.14478/ace.2017.1012

Electrospinning Method-based CNF Properties Analysis and Its Application to Electrode in Electrolysis Process  

Hwang, In-Hyuck (Department of Environmental Energy Engineering, Graduate School of Kyonggi University)
Choi, Sung-Yeol (Department of Environmental Energy Engineering, Graduate School of Kyonggi University)
Lee, Sang Hyun (Department of Environmental Energy Engineering, Graduate School of Kyonggi University)
Lee, Ye-Hwan (Department of Environmental Energy Engineering, Graduate School of Kyonggi University)
Lee, Sang Moon (Department of Environmental Energy Engineering, Kyonggi University)
Kim, Sung-Chul (Department of Environmental Energy Engineering, Kyonggi University)
Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
Publication Information
Applied Chemistry for Engineering / v.28, no.2, 2017 , pp. 257-262 More about this Journal
Abstract
In this study, CNF (carbon nanofiber) was prepared with different process variables of electrospinning method. Morphology of CNF was observed by SEM, and main parameters to form the CNF were applied voltage, TCD, polymer concentration and heat treatment condition. Comparison of toluene removal efficiency, as applying the prepared CNF to electrodes of an electrolysis process, showed the direct effect of cathode on electrolysis as well as anode.
Keywords
VOCs (volatile organic compounds); electrospinning; carbon nanofiber; electrode; cathode;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Y. G. Hwang and S. Y. Chu, Electrochemical treatment of the wastewater of azo dye, Res. Inst. Eng. Technol. Kyungnam University, 13, 139-148 (1995).
2 D. S. Kim and Y. S. Park, Electrochemical degradation of phenol by electro-fenton process, J. Environ. Health Sci., 35(3), 201-208 (2009).
3 G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38, 11-41 (2004).   DOI
4 M. Panizza, A. Barbucci, R. Ricotti, and G. Cerisola, Electrochemical degradation of methylene blue, Sep. Purif. Technol., 54, 382-387 (2007).   DOI
5 B. H. Kim, S. K. Nataraj, K. S. Yang, and H. G. Woo, Synthesis, characterization, and photocatalytic activity of $TiO_2$/$SiO_2$ nanoparticles loaded on carbon nanofiber web, J. Nanosci. Nanotechnol., 10(5), 3331-3335 (2010).   DOI
6 G. Y. Oh, Y. W. Ju, H. R. Jung, and W. J. Lee, Preparation of the novel manganese-embedded PAN-based activated carbon nanofibers by electrospinning and their toluene adsorption, J. Anal. Appl. Pyrolysis, 81, 211-217 (2008).   DOI
7 G. Y. Oh, Y. W. Ju, M. Y. Kim, H. R. Jung, H. J. Kim, and W. J. Lee, Adsorption of toluene on carbon nanofibers prepared by electrospinning, Sci. Total Environ., 393, 347-347 (2008).
8 C. Zhang, X. Yuan, L. Wu, Y. Han, and J Sheng, Study on morphology of electrospun poly(vinyl alcohol) mats, Eur. Polym. J., 41, 423-432 (2005).   DOI
9 X. Yuan, Y. Zhang, C. Dong, and J. Sheng, Morphology of ultrafine polysulfone fibers prepared by electrospinning, Polym. Int., 53(11), 1704-1710 (2004).   DOI
10 J. S. Bedi, D. W. Lester, Y. X. Fang, J. F. C. Turner, J. Zhou, S. M. Alfadul, C. Perry, and Q. Chen, Electrospinning of poly(methyl methacrylate) nanofibers in a pump-free process, J Polym. Eng., 33(5), 453-461 (2013).
11 C. S. Ki, D. H. Baek, K. D. Gang, K. H. Lee, I. C. Um, and Y. H. Park, Characterization of gelatin nanofiber prepared form gelatin- formic acid solution, Polymer, 46(14), 5094-5102 (2005).   DOI
12 S. H. Park and I. S. Kim, Disinfection of harmful organisms for sea water using electrolytic treatment system, Kor. Inst. Navig. Port Res., 28(10), 995-960 (2004).
13 H. K. Kim, J. Y. Jeong, J. W. Shin, and J. Y. Park, Removal of COD and T-N caused by ETA from nuclear power plant wastewater using 3D packed bed bipolar electrode system, J. Kor. Soc. Water Wastewater, 26(3), 409-421 (2012).   DOI
14 H. S. Jin and J. H. Lee, Removal of Lead from seawater using electrolysis and coprecipitation method, J. Korean Soc. Environ. Eng., 32(2), 149-154 (2010).
15 J. S. Kim, Electrochemical oxidation of representative inorganic and organic contaminants in an in situ electrochemical reactor, PhD dissertation, University of Washington, Washington, USA (2006).
16 K. N. Jung, J. I. Lee, S. Yoon, S. H. Yeon, W. Chang, K. H. Shin, and J. W. Lee, Manganese oxide/carbon composite nanofibers: electrospinning preparation and application as a bi-functional cathode for rechargeable lithium-oxygen batteries, J. Mater. Chem., 22, 21845-21848 (2012).   DOI
17 G. Feng, R. Qiao, J. Huang, B. G. Sumpter, and V. Meunier, Ion distribution in electrified micropores and its role in the anomalous enhancement of capacitance, ACS Nano., 4(4), 2382-2390 (2010).   DOI
18 L. Ji, K. H. Jung, A. J. Medford, and X. Zhang, Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization, J. Mater. Chem., 19, 4992-4997 (2009).   DOI
19 J. H. Park, Y. W. Ju, S. H. Park, H. R. Jung, K. S. Yang, and W. J. Lee, Effects of electrospun polyacrylonitrile-based carbon nanofibers as catalyst support in PEMFC, J. Appl. Electrochem., 39, 1229-1236 (2009).   DOI
20 Y. Zhang, H. Ouyang, C. T. Lim, S. Ramakrishna, and Z. M. Huang, Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds, J. Biomed. Mater. Res. B, 72(1), 156-165 (2005).
21 J. Zhu, S. Wei, J. Ryu, M. Budhathoki, G. Liang, and Z. Guo, In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites, J. Mater. Chem., 20, 4937-4948 (2010).   DOI
22 H. M. Lee, K. H. An, and B. J. Kim, Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers, Carbon Lett., 15(2), 146-150 (2014).   DOI
23 A. R. Kim, H. J. Park, Y. S. W, T. Y. Lee, J. K. Lee, and J. H. Lim, Electrochemical treatment of dye wastewater using Fe, $RuO_2$/Ti, $PtO_2$/Ti, $IrO_2$/Ti and graphite electrodes, Clean Technol., 22(1), 16-28 (2016).   DOI
24 N. Jiang and H. M. Ment, The durability of different elements doped manganese dioxide-coated anodes for oxygen evolution in seawater electrolysis, Surf. Coat. Technol., 206(21), 4362-4367 (2012).   DOI
25 Z. Kato, J. Bhattarai, N. Kumagai, K. Izumiya, and K. Hashimoto, Durability enhancement and degradation of oxygen evolution anodes in seawater electrolysis for hydrogen product, Appl. Surf. Sci., 257(19), 8230-8236 (2011).   DOI
26 H. Fan and M. Han, Improved performance and stability of Ag-infiltrated nanocomposite $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$-${\delta}$-$(Y_2O_3)_{0.08}(ZrO_2)_{0.92}$ oxygen electrode for $H_2O$/$CO_2$ co-electrolysis, J. Power Sources., 336(30), 179-185 (2016).   DOI
27 S. H. Lee and J. H. Kim, The study of mutagenicity and organic pollutant in Nakdong river water basin, J. Korean Soc. Environ. Eng., 19(6), 785-798 (1997).
28 F. X. Prenafeta-Boldu, J. Vervoort, J. T. Grotenhuis, and J. W. Van Groenestijin, Substrate interaction during the biodegradation of BTEX hydrocarbons by the fungus cladophialophora sp. Strain T1, Appl. Environ. Microbiol., 68(6), 2660-2665 (2002).   DOI
29 IRIS (Intergrated Risk Information System), US EPA (1993).
30 M. K. Kim, Y. S. Park, and Y. Chung, Studies on the quantitative analysis and the health effect of VOCs in environment, Anal. Sci. Technol., 13(1), 55-65 (2000).