• Title/Summary/Keyword: Polymer carriers

Search Result 110, Processing Time 0.027 seconds

Charge Carrier Behaviour of Metal-Polymer Interface (금속-고분자 계면에서의 전하의 거동)

  • Yun, Ju-Ho;Choi, Yong-Sung;Ahn, Seong-Soo;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.373-374
    • /
    • 2008
  • Insulating polymers and their composites have been widely used in various electric apparatus or cables. Recently, the effects of interfaces (metal/insulator or insulator/insulator interfaces) on electrical insulation have attracted much attention. However, interfacial phenomena in actual insulation systems and their physical backgrounds are not well understood yet. In this paper, the behaviour of charge carriers near the metal/polymer interface and its effects on conduction and breakdown phenomena are discussed. The metal/polymer interface strongly affects carrier injection, space charge formation and breakdown phenomena. Based on their experimental results, the physical backgrounds of the interfacial phenomena are explained.

  • PDF

Biodegradable polymeric drug delivery systems

  • Jeong, Seo-Young;Kim, Sung-Wan
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.63-73
    • /
    • 1986
  • The use of biodegradable polymetric materials as drug carriers is a relatively new dimension in polymeric drug delivery systems. A number of biodegradable or bioerodible polymers, such as poly(lactic/glycolic acid) copolymer, poly($\alpha$-amino acid), polyanhydride, and poly (ortho ester) are currently being investigated for this purpose. These polymers are useful for matrix and reservoir-type delivery devices. In addition, when chemical functional groups are introduced to the biodegradable polymer backdone, such as poly (N-(2-hydroxypropyl) methacrylamide), the therapeutic agent can be covalently bound directly or via spacer to the backbone polymer. These polymer/drug conjugates represent another new dimension in biodegradable polymeric drug delivery systems. In addition, examples of biodegradable polymeric durg delivery systems currently being investigated will be discussed for the purpose of demonstrarting the potential importance of this new field.

  • PDF

The Study on Trapping Phenomena of Charge Carrier in Polymer (고분자내 케리아의 트랍핑 현상에 관한 연구)

  • 이덕출
    • 전기의세계
    • /
    • v.26 no.4
    • /
    • pp.68-72
    • /
    • 1977
  • The main purpose of this paper is to study on the nature of the traps in polymer. The polyethlene is typical of polymer material as to be selected for a sample. The current I$_{th}$ are obtained with an small external bias voltage from high density polyethylene which have been treated by the high-field application. Two peaks, P$_{1}$ and P$_{2}$ with maxima near 85.deg. C, respectively, appeared on the current I$_{th}$ spectrum. From the results of experiment, It is clear that The current I$_{th}$ arises from the drift, under the external field, of carriers released from the trap sites by the heating and the trap is surrounded by a potential barrier and trapping proceeds during the high-field treatment. The obtained results can suggest that polyethylene contains trap sites which have an important role in the electrical conduction and breakdown of polymeric materials.rials.

  • PDF

Fabrication of Porous Silk Fibroin Microparticles by Electrohydrodynamic Spraying (전기분사법에 의한 다공성 실크 피브로인 미세입자의 제조)

  • Kim, Moo Kon;Lee, Ki Hoon
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.98-102
    • /
    • 2014
  • Nowadays, silk fibroin receives a lot of attention as novel natural biomaterials due to its excellent biocompatibility and biodegradability. Electrohydrodynamic spraying (EHDS) is one of the method for the preparation of micro or nanoparticles by applying high voltage to the polymer solution. In this research, we fabricated silk fibroin porous microparticles by electrohydrodynamic spraying. Poly(ethylene glycol) (PEG) was added to the fibroin solution to give pores to silk fibroin microparticles. By the addition of PEG, the microparticle size was decreased despite of the decrease in conductivity and the increase of viscosity of the spraying solution. It seems that the immiscibility of silk fibroin and PEG affected much more to the microparticle size than the conductivity and viscosity. Immersing the as-sprayed microparticles into the water removed the phase-separated PEG, and finally, porous silk fibroin microparticles were prepared. The porous silk fibroin microparticles are expected to be applied as drug carriers in drug delivery or cell carriers in tissue engineering.

A Manufacturing Technology Development of Microbe Carrier (FRP폐기물 재활용을 위한 미생물 담체 제조 기술 개발)

  • 김용섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.82-87
    • /
    • 2004
  • The purpose of this paper is to obtain the data for manufacturing of microbe carriers as a method of FRP waste recycling technology. Since FRP waste is polymer, the experiment of the thermogravity analyzing was carried out to find thermal behavior. After that, microbe carriers were prepared from waste FRP powder, which had been decomposed, milled, and mixed with clay as a binder and CaCO3 as a flux and a loaming agent, respectively. finally it was made by filing of the sample up to 1,05$0^{\circ}C$. It was investigated how the variation of the additives and firing temperature effect apparent density, water absorption and micro structure.

Formation of Poly(ethylene glycol)-Poly($\varepsilon$-caprolactone) Nanoparticles via Nanoprecipitation

  • Lee, Jae-Sung;Hwang, Su-Jong;Lee, Doo-Sung;Kim, Sung-Chul;Kim, Duk-Joon
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.72-78
    • /
    • 2009
  • Size control of therapeutic carriers in drug delivery systems has become important due to its relevance to biodistribution in the human body and therapeutic efficacy. To understand the dependence of particle size on the formation condition during nanoprecipitation method, we prepared nanoparticles from biodegradable, amphiphilic block copolymers and investigated the particle size and structure of the resultant nanoparticles according to various process parameters. We synthesized monomethoxy poly(ethylene glycol)-poly($\varepsilon$-caprolactone) block copolymer, MPEG-PCL, with different MPEG/PCL ratios via ring opening polymerization initiated from the hydroxyl end group of MPEG. Using various formulations with systematic change of the block ratio of MPEG and PCL, solvent choice, and concentration of organic phase, MPEG-PCL nanoparticles were prepared through nanoprecipitation technique. The results indicated that (i) the nanoparticles have a dual structure with an MPEG shell and a PCL core, originating from self-assembly of MPEG-PCL copolymer in aqueous condition, and (ii) the size of nanoparticles is dependent upon two sequential processes: diffusion between the organic and aqueous phases and solidification of the polymer.

Electrochemical Performance of Lithium Sulfur Batteries with Plasticized Polymer Electrolytes based on P(VdF-co-HFP)

  • Park, Jeong-Ho;Yeo, Sang-Yeob;Park, Jung-Ki;Lee, Yong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.110-115
    • /
    • 2010
  • The plasticized polymer electrolytes based on polyvinylidene fluoride-co-hexafluoropropylene (P(VdF-co-HFP)), tetra (ethylene glycol) dimethyl ether (TEGDME), and lithium perchlorate ($LiClO_4$) are prepared for the lithium sulfur batteries by solution casting with a doctor-blade. The polymer electrolyte with EO : Li ratio of 16 : 1 shows the maximum ionic conductivity, $6.5\;{\times}\;10^{-4}\;S/cm$ at room temperature. To understand the effect of the salt concentration on the electrochemical performance, the polymer electrolytes are characterized using electrochemical impedance spectroscopy (EIS), infrared spectroscopy (IR), viscometer, and differential scanning calorimeter (DSC). The optimum concentration and mobility of the charge carriers could lead to enhance the utilization of sulfur active materials and the cyclability of the Li/S unit cell.

Olefin/Paraffin Separation though Facilitated Transport Membranes in Solid State

  • Hong, Seong-Uk;Won, Jong-Ok;Hong, Jae-Min;Park, Hyun-Chae;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.15-18
    • /
    • 1999
  • A simple mathematical model for facilitated mass transport through a fixed site carrier membrane was derived by assuming an instantaneous, microscopic concentration (activity) fluctuation. The current model demonstrates that the facilitation factor depends on the extent of concentration fluctuation, the time scale ratios of diffusion to chemical reaction and the ratio of the carrier concentration to the solute solubility in matrix. The model was examined against the experimental data on oxygen transport in membranes containing metallo-porphyrin carriers, and the agreement was exceptional (within 10% error). The basic concept of this approach was applied to separate olefin from olefin/paraffin mixtures. A proprietaty carrier, developed here, resulted that the selectivity of propylene over propane was more than 120 and the propylene permeance exceed 40 gpu.

  • PDF

Characterization and Preparation of Low Molecular Weight Water Soluble Chitosan Nanoparticle Modified with Cell Targeting Ligand for Efficient Gene Delivery (효과적인 유전자전달을 위한 표적성 리간드가 도입된 저분자량 수용성 키토산 나노입자의 제조 및 특성)

  • Heo, Sun-Heang;Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.454-459
    • /
    • 2007
  • Gene therapy using low molecular weight water soluble chitosan (LMWSC) as polycationic polymer shows good biocompatibility, but low transfection efficiency. The mechanism of folic acid (FA) uptake in the cells to promote targeting and internalization could improve transfection rates. The objective of this study was to synthesize and characterize the WSCFA-DNA complex and evaluate their cytotoxicity, in vitro. In $^1H-NMR$ spectra, specific peaks appeared both of FA and LMWSC in $D_2O$. WSCFA nanoparticles have spherical shapes with particle size show below 110 nm. In the cell cytotoxicity test, the WSCFA-DNA complex showed high cell viability, in vitro. Gel electrophoresis showed condensed DNA within the carriers. hi vitro transfection efficiency was assayed by fluorescence spectroscopy WSCFA nanoparticles have less cytotoxicity, good DNA condensation and particle size around 110 nm, which makes them a promising candidate as a non-viral gene vector.

Release, Biocompatibility and Pharmacokinetics of Semi-solid Naloxone Implants of Poly(ortho ester) (폴리오르소에스텔을 이용한 나록손의 반고형 이식제제의 방출, 생체적합성 및 약물동력학적 연구)

  • Lim, Sang-Hee;Park, Joo-Ae;Kim, Kil-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.1
    • /
    • pp.21-27
    • /
    • 1999
  • Semi-solid poly(ortho esters) (POE) were prepared to provide bioerodible carriers for sustained drug delivery systems of naloxone (NLX) in the treatment of narcotic addiction. As the POE have viscous behavior at room temperature, a significant advantage of this polymer is that it can be injected without any surgical intervention. The POE was synthesized by a transesterification reaction between 1,2,6-hexanetriol and trimethyl orthoacetate, and the structure of the polymer was confirmed by IR. The in vitro release of the drug from POE was studied. The release rate of NLX decreased with increasing intrinsic viscosities of the polymer. In vivo biocompatibility studies were carried out in rats with NLX loaded POE. Histopathological analysis showed that NLX implants are well-tolerated by rats when used subcutaneously. Pharmacokinetic studies of POE-NLX implants of two different viscosities were carried out in rabbits. In all cases, plasma concentrations of NLX were maintained over 1 ng/ml for at least 168 hours, but initial burst effect was observed. Mean residence time(MRT) was found to depend on the viscosity of the polymer.

  • PDF