Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.1.98

Fabrication of Porous Silk Fibroin Microparticles by Electrohydrodynamic Spraying  

Kim, Moo Kon (Department of Biosystems & Biomaterials Science and Engineering, Seoul National University)
Lee, Ki Hoon (Center for Food and Bioconvergence, Seoul National University)
Publication Information
Polymer(Korea) / v.38, no.1, 2014 , pp. 98-102 More about this Journal
Abstract
Nowadays, silk fibroin receives a lot of attention as novel natural biomaterials due to its excellent biocompatibility and biodegradability. Electrohydrodynamic spraying (EHDS) is one of the method for the preparation of micro or nanoparticles by applying high voltage to the polymer solution. In this research, we fabricated silk fibroin porous microparticles by electrohydrodynamic spraying. Poly(ethylene glycol) (PEG) was added to the fibroin solution to give pores to silk fibroin microparticles. By the addition of PEG, the microparticle size was decreased despite of the decrease in conductivity and the increase of viscosity of the spraying solution. It seems that the immiscibility of silk fibroin and PEG affected much more to the microparticle size than the conductivity and viscosity. Immersing the as-sprayed microparticles into the water removed the phase-separated PEG, and finally, porous silk fibroin microparticles were prepared. The porous silk fibroin microparticles are expected to be applied as drug carriers in drug delivery or cell carriers in tissue engineering.
Keywords
silk fibroin; PEG; electrohydrodynamic spraying; porous microparticle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Cao and B. Wang, Int. J. Mol. Sci., 10, 1514 (2009).   DOI   ScienceOn
2 G. H. Altman, F. Diaz, C. Jakuba, T. Calabro, R. L. Horan, J. Chen, H. Lu, J. Richmond, and D. L. Kaplan, Biomaterials, 24, 401 (2003).   DOI   ScienceOn
3 J. G. Hardy, L. M. Romer, and T. R. Scheibel, Polymer, 49, 4309 (2008).   DOI   ScienceOn
4 H. L. Kim, H. Yoo, H. J. Park, Y. G. Kim, D. Lee, Y. S. Kang, and G. Khang, Polymer(Korea), 35, 7 (2011).
5 S. Y. Cho, H. H. Park, and H.-J. Jin, Polymer(Korea), 36, 651 (2012).
6 Y. Srisuwan, P. Srihanam, and Y. Baimark, J. Macromol. Sci. Part A-Pure Appl. Chem., 46, 521 (2009).   DOI   ScienceOn
7 J.-H. Yeo, K.-G. Lee, Y.-W. Lee, and S. Y. Kim, Eur. Polym. J., 39, 1195 (2003).   DOI   ScienceOn
8 Z. Cao, X. Chen, J. Yao, L. Huang, and Z. Shao, Soft Matter, 3, 910 (2007).   DOI   ScienceOn
9 S. Chakraborty, I.-C. Liao, A. Adler, and K. W. Leong, Adv. Drug Deliv. Rev., 61, 1043 (2009).   DOI   ScienceOn
10 H.-J. Jin, J. Park, R. Valluzzi, P. Cebe, and D. L. Kaplan, Biomacromolecules, 5, 711 (2004).   DOI   ScienceOn
11 B. D. Lawrence, J. K. Marchant, M. A. Pindrus, F. G. Omenetto, and D. L. Kaplan, Biomaterials, 30, 1299 (2009).   DOI   ScienceOn
12 H. Oh, J. Y. Lee, A. Kim, C. S. Ki, J. W. Kim, Y. H. Park, and K. H. Lee, Fiber. Polym., 8, 470 (2007).   DOI
13 C. Cuniberti and R. Ferrando, Polymer, 13, 379 (1972).   DOI   ScienceOn
14 B. Hammouda, D. L. Ho, and S. Kline, Macromolecules, 37, 6932 (2004).   DOI   ScienceOn
15 H.-J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, Biomacromolecules, 3, 1233 (2002)   DOI   ScienceOn
16 X. Chen, D. P. Knight, Z. Shao, and F. Vollrath, Polymer, 42, 9969 (2001).   DOI   ScienceOn
17 N. Bock, T. R. Dargaville, and M. A. Woodruff, Prog. Polym. Sci., 37, 1510 (2012).   DOI   ScienceOn
18 B. Duan, C. Dong, X. Yuan, and K. Yao, J. Biomater. Sci.-Polym. Ed., 15, 797 (2004).   DOI   ScienceOn
19 B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004).   DOI   ScienceOn
20 E. Wenk, A. J. Wandrey, H. P. Merkle, and L. Meinel, J. Control. Release, 132, 26 (2008).   DOI   ScienceOn