• Title/Summary/Keyword: Polymer cantilever

Search Result 31, Processing Time 0.028 seconds

AgNW-based functional polymer cantilever to improve maturity and contractility of cardiomyocytes (심근세포 성숙도 및 수축력 향상을 위한 AgNW 기반의 기능성 폴리머 캔틸레버)

  • Jeung, Min-young;Sim, Yu-ri;Yun, Ha-young;Kim, Dong-Su;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.185-189
    • /
    • 2021
  • Herein, we propose a functional polymer cantilever to enhance maturation and contractile force of cardiomyocytes. The proposed cantilever consists of a surface-patterned polymer substrate and silver nanowires (AgNWs). The AgNWs are transferred to the PDMS substrate using conventional molding techniques. This thin metallic surface significantly improves the adhesion of cardiomyocyte on the surface-patterned PDMS with the hydrophobic characteristics. In addition, the use of AgNWs improves the visibility of the conducting PDMS substrate for the observation of cardiomyocyte through an inverted microscope. The AgNWs also assist in synchronizing each cardiomyocyte to maximize its contractile force.

Theoretical Modeling and Dynamic Characteristics of a Cantilever IPMC Actuator (외팔보형 IPMC 구동기의 이론적 모델링과 구동특성)

  • Han, Dae-Woong;Lee, Seung-Yop;Cho, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1521-1526
    • /
    • 2008
  • IPMC(Ionic Polymer-Metal Comosite) exhibits large deformation, having great attention in many application fields. It generates bending moment by ion exchange polymer film. It can be quickly bended by the applied voltage across the plated electrode of the polymer film. In the present paper, we derive the theoretical modeling and dynamic analysis of bending motions of IPMC actuators using the Euler-Bernoulli beam theory. The theoretical model of a cantilever IPMC actuator estimates the moment produced by the applied voltage. The dynamic characteristics, including natural frequencies and frequency response, are calculated by the theoretical model, and they are compared with the experimental results and finite element analysis. It is shown that the mathematical modeling allows precise estimation to the voltage-driven motion of the cantilever IPMC in air.

  • PDF

Shaping of piezoelectric polyvinylidene fluoride polymer film for tip position sensing of a cantilever beam

  • Lee, Young-Sup
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.225-230
    • /
    • 2005
  • This paper describes a novel tip position sensor made of a triangularly shaped piezoelectric PVDF (polyvinylidene fluoride) film for a cantilever beam. Due to the boundary condition of the cantilever beam and the spatial sensitivity function of the sensor, the charge output of the sensor is proportional to the tip position of the beam. Experimental results with the PVDF sensor were compared with those using two commercially available position sensors: an inductive sensor and an accelerometer. The resonance frequencies of the test beam, measured using the PVDF sensor, matched well with those measured with the two commercial sensors and the PVDF sensor also showed good coherence over wide frequency range, whereas the inductive sensor became poor above a certain frequency.

Fabrication of Piezoelectric Cantilever with Microcone Tip for Sensing Local Stiffness of Biological Tissue (생체 조직의 국소 강도 측정을 위한 마이크로 콘 팁을 가진 압전 캔틸레버 제작)

  • Roh, Hee Chang;Yang, Dasom;Ryu, WonHyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.743-748
    • /
    • 2017
  • For diseases that are difficult to detect by conventional imaging techniques, the development of a diagnostic method that allows sensors to be inserted into the human body to aid the diagnosis of local spots of the target tissue, is highly desirable. In particular, it is extremely difficult to determine whether vulnerable plaque can later develop into atherosclerosis using only imaging techniques. However, vulnerable plaques are expected to have slightly different mechanical properties than healthy tissue. In this study, we aim to develop a piezoelectric cantilever-type sensor that can be inserted into the human body and can detect the local mechanical properties of the target tissue. A piezoelectric polymer composite based on $BaTiO_3$ nanoparticles was optimized for fabrication of a piezoelectric cantilever. Next, a micro-cone tip was fabricated at the end of the piezoelectric cantilever by thermal drawing. Finally, stiffness of biological tissue samples was measured with the piezoelectric cantilever sensor for verifying its functionality.

Fabrication of a Parallel Polymer Cantilever to Measure the Contractile Force of Drug-treated Cardiac Cells (약물처리된 심장세포의 세포 수축력 측정을 위한 병렬 폴리머 캔틸레버 제작)

  • Kim, Dong-Su;Lee, Dong-Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.100-104
    • /
    • 2020
  • Thus far, several in vivo biosensing platforms have been proposed to measure the mechanical contractility of cultured cardiomyocytes. However, the low sensitivity and screening rate of the developed sensors severely limit their practical applications. In addition, intensive research and development in cardiovascular disease demand a high-throughput drug-screening platform based on biomimetic engineering. To overcome the drawbacks of the current state-of-the-art methods, we propose a high-throughput drug-screening platform based on 16 functional high-sensitivity well plates. The proposed system simulates the physiological accuracy of the heart function in an in vitro environment. We fabricated 64 cantilevers using highly flexible and optically transparent silicone rubber and placed in 16 independent wells. Nanogrooves were imprinted on the surface of the cantilever to promote cell alignment and maturation. The adverse effects of the cardiovascular drugs on the cultured cardiomyocytes were systematically investigated. The 64 cantilevers demonstrated a highly reliable and reproducible mechanical contractility of the drug-treated cardiomyocytes. Real-time high-throughput screening and simultaneous evaluation of the cardiomyocyte mechanical contractility under multiple drugs verified that the proposed system could be used as an efficient drugtoxicity test platform.

Thermopiezoelectric Cantilever for Probe-Based Data Storage System

  • Jang, Seong-Soo;Jin, Won-Hyeog;Kim, Young-Sik;Cho, Il-Joo;Lee, Dae-Sung;Nam, Hyo-Jin;Bu, Jong. U.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • Thermopiezoelectric method, using poly silicon heater and a piezoelectric sensor, was proposed for writing and reading in a probe based data storage system. Resistively heated tip writes data bits while scanning over a polymer media and piezoelectric sensor reads data bits from the self-generated charges induced by the deflection of the cantilever. 34${\times}$34 array of thermopiezoelectric nitride cantilevers were fabricated by a single step wafer level transfer method. We analyzed the noise level of the charge amplifier and measured the noise signal. With the sensor and the charge amplifier 20mn of deflection could be detected at a frequency of 10KHz. Reading signal was obtained from the cantilever array and the sensitivity was calculated.

Nanostructure Fabrication using Dip-pen Nanolithography

  • Lee, Seung-Woo;Mirkin Chad A.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.285-285
    • /
    • 2006
  • The ionic layer-by-layer (LBL) assembled films can be formed by sequentially dipping of substrates to oppositely charged polyions solution in the multilayer, called polyelectrolytes multilayer (PEM) films. Easy way of these assemblies of charged polymers offer the ability to adjust important parameters such as controllability of thickness in the nanometer-scale level and functionality of most top layer of PEM films. Nevertheless, we do not know of any trials to fabricate PEM organic films into nanometer size. Herein, we show the integration of the LBL technique with DPN in fabricating nanometer size patterns of multilayered polyelectrolyte structures. Through the use of single and multiple cantilever AFM probes, we demonstrate the parallel writing capabilities of DPN.

  • PDF

Comparative Study on the Failure of Polymer/Roughened Metal Interfaces under Mode-I Loading I: Experimental Result (인장하중하에서의 고분자/거친금속 계면의 파손에 대한 비교연구 I: 실험결과)

  • Lee Ho-Young;Kim Sung-Ryong
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Copper-based leadframe sheets were immersed in two kinds of hot alkaline solutions to form brown-oxide or black-oxide layer on the surface. The oxide-coated leadframe sheets were molded with epoxy molding compound (EMC). After post mold curing, the oxide-coated EMC-leadframe joints were machined to form sandwiched double-cantilever beam (SDCB) specimens. The SDCB specimens were used to measure the fracture toughness of the EMC/leadframe interfaces under quasi-Mode I loading conditions. Fracture surfaces were analyzed by various equipment to investigate failure path. The present paper deals with the failure path, and the cause of the failure path formation with an adhesion model will be treated in the succeeding paper.