• Title/Summary/Keyword: Polymer Electrolyte Fuel Cell

Search Result 533, Processing Time 0.029 seconds

Ionomer Binder in Catalyst Layer for Polymer Electrolyte Membrane Fuel Cell and Water Electrolysis: An Updated Review (고분자 전해질 연료전지 및 수전해용 촉매층의 이오노머 바인더)

  • Park, Jong-Hyeok;Akter, Mahamuda;Kim, Beom-Seok;Jeong, Dahye;Lee, Minyoung;Shin, Jiyun;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.174-183
    • /
    • 2022
  • Polymer electrolyte fuel cells and water electrolysis are attracting attention in terms of high energy density and high purity hydrogen production. The catalyst layer for the polymer electrolyte fuel cell and water electrolysis is a porous electrode composed of a precious metal-based electrocatalyst and an ionomer binder. Among them, the ionomer binder plays an important role in the formation of a three-dimensional network for ion conduction in the catalyst layer and the formation of pores for the movement of materials required or generated for the electrode reaction. In terms of the use of commercial perfluorinated ionomers, the content of the ionomer, the physical properties of the ionomer, and the type of the dispersing solvent system greatly determine the performance and durability of the catalyst layer. Until now, many studies have been reported on the method of using an ionomer for the catalyst layer for polymer electrolyte fuel cells. This review summarizes the research results on the use of ionomer binders in the fuel cell aspect reported so far, and aims to provide useful information for the research on the ionomer binder for the catalyst layer, which is one of the key elements of polymer electrolyte water electrolysis to accelerate the hydrogen economy era.

Research Trends on Improvement of Physicochemical Properties of Sulfonated Hydrocarbon Polymer-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 탄화수소계 고분자 전해질 막의 물성 향상에 관한 연구동향)

  • Inhyeok, Hwang;Davin, Choi;Kihyun, Kim
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.427-441
    • /
    • 2022
  • Polymer electrolyte membrane (PEM) serving as a separator that can prevent the permeation of unreacted fuels as well as an electrolyte that selectively transports protons from the anode to the cathode has been considered a key component of polymer electrolyte membrane fuel cell (PEMFC). The perfluorinated sulfonic acid-based PEMs, represented by Nafion®, have been commercialized in PEMFC systems due to their high proton conductivity and chemical stability. Nevertheless, these PEMs have several inherent drawbacks including high manufacturing costs by the complex synthetic processes and environmental problems caused by producing the toxic gases. Although numerous studies are underway to address these drawbacks including the development of sulfonated hydrocarbon polymer-based PEMs (SHP-PEMs), which can easily control the polymer structures, further improvement of PEM performances and durability is necessary for practical PEMFC applications. Therefore, this study focused on the various strategies for the development of SHP-PEMs with outstanding performance and durability by 1) introducing cross-linked structures, 2) incorporating organic/inorganic composites, and 3) fabricating reinforced-composite membranes using porous substrates.

THE OPERATING CHARACTERISTICS IN AN AIR-BREATHING POLYMER ELECTROLYTE FUEL CELL (공기 호흡형 고분자 전해질 연료전지 제작 및 발전 특성 연구)

  • SOHN Young-Jun;PARK Gu-Gon;UM Sukkee;YIM Sung-Dae;Yang Tae-Hyun;YOON Young-Gi;LEE Won-Yong;KIM Chang-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.277-280
    • /
    • 2005
  • Air-breathing polymer electrolyte membrane fuel cells (PEMFC) are highly promising particularly for small-power applications up to tens watts class. A distinctive feature of the air-breathing PEMFC is its simple system configuration in which axial fans operate for dual purposes, supplying both oxidant and coolant in a single manner. In the present study, a nominal SOW air-breathing PEMFC system is developed and investigated to determine the optimal operating strategy through parametric studies (i.e., reactant humidity, and fan-blowing flow rate). The cell voltage distributions are examined as a function of time to evaluate the system performance under various operating conditions.

  • PDF

Characteristics of the Multi-kW Class Polymer Electrolyte Membrane Fuel Cell Stack for a Hybrid Electric Golf Cart

  • I.H. Oh;S.J. Shin;J.H. Jo;Park, S.K.;H.Y. Ha;S.A. Hong;S.Y. Ahn;Lee, Y.C.;S.A. Cho
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.254-261
    • /
    • 2002
  • The fabrication method for the main components of the polymer electrolyte membrane fuel cell stack such as electrodes, membrane-electrode assemblies, and bipolar plates was established for the effective electrode area of 240 ㎠. A counter-flow type 100-cell stack was fabricated by using the above components and then a maximum power of 7.44 kW for H$_2$/O$_2$ and 5.56 kW for H$_2$/air could be obtained at 70$\^{C}$ and 1 atm. It was seen that the distribution of the OCV for unit cells in the stack was uniform but the voltage deviation increased as the load increased due to the IR drop and the electrode polarization. The stack was applied to the power source of the fuel cell/battery hybrid electric golf car. It produced about 1 kW at a room temperature operation during the test run, which occupied about 43% of the total power required by the 2.3 kW motor.

Energy Saving Effect of CCHP System Using High Temperature Polymer Electrolyte Fuel Cell for Data Centers (고온 고분자 연료전지를 이용한 데이터 센터용 CCHP 시스템의 에너지 절감 효과)

  • SEONGHYEON HAM;TAESEONG KANG;WON-YONG LEE;MINJIN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Data centers not only consume significant electricity to operate IT equipment, but also use a lot of electricity to cool the heat generated by IT equipment. The waste heat of a high-temperature polymer electrolyte fuel cell (HT-PEFC) is capable of producing cooling , so it can be effectively applied to data centers that require cooling throughout the year. The energy-saving effects of the proposed combined cooling, heat and power (CCHP) system using HT-PEFC. That was analyzed based on the annual energy consumption data of a specific data center. When the system was running at 100% of the year, It was shown that the installation of 1 MW of the proposed system can save 3,407 MWh of electrical energy per year. In addition, compared to the existing system, the annual power usage effectiveness can be improved from 2.0 to 1.57 and 6,293 MWh of extra heat energy per year can be produced to sell. Furthermore, sensitivity analysis was performed on the fuel cell operating temperature and current density to guide the appropriate installation capacity of the proposed system.

Research of Cross-linked Hydrocarbon based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 탄화수소계 기반 가교 전해질 막의 연구동향)

  • Ko, Hansol;Kim, Mijeong;Nam, Sang Yong;Kim, Kihyun
    • Membrane Journal
    • /
    • v.30 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • Polymer electrolyte membrane fuel cells (PEMFCs) have gained much attention as eco-friendly energy conversion devices without emission of environmental pollutant. Polymer electrolyte membrane (PEM) that can transfer proton from anode to cathode and also prevent fuel cross-over has been regarded as a key component of PEMFCs. Although perfluorinated polymer membranes such as Nafion® were already commercialized in PEMFCs, their high cost and toxic byproduct generated by degradation have still limited the wide spread of PEMFCs. To overcome these issues, development of hydrocarbon based PEMs have been studied. Incorporation of cross-linked structure into the hydrocarbon based PEM system has been reported to fabricate the PEMs showing both high proton conductivity and outstanding physicochemical stability. This study focused on the various cross-linking strategies to the preparation of cross-linked PEMs based on hydrocarbon polymers with ion conducting groups for application in PEMFCs.

Ionic Cluster Mimic Membranes Using Ionized Cyclodextrin

  • Won Jong-Ok;Yoo Ji-Young;Kang Moon-Sung;Kang Yong-Soo
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.449-455
    • /
    • 2006
  • Ionic cluster mimic, polymer electrolyte membranes were prepared using polymer composites of crosslinked poly(vinyl alcohol) (PVA) with sulfated-${\beta}$-cyclodextrins (${\beta}-CDSO_3H$) or phosphated-${\beta}$-cyclodextrins (${\beta}-CDPO(OH)_2$). When Nafion, developed for a fuel cell using low temperature, polymer electrolyte membranes, is used in a direct methanol fuel cell, it has a methanol crossover problem. The ionic inverted micellar structure formed by micro-segregation in Nafion, known as ionic cluster, is distorted in methanol aqueous solution, resulting in the significant transport of methanol through the membrane. While the ionic structure formed by the ionic sites in either ${\beta}-CDSO_3H$ or ${\beta}-CDPO(OH)_2$ in this composite membrane is maintained in methanol solution, it is expected to reduce methanol transport. Proton conductivity was found to increase in PVA membranes upon addition of ionized cyclodextrins. Methanol permeability through the PVA composite membrane containing cyclodextrins was lower than that of Nafion. It is thus concluded that the structure and fixation of ionic clusters are significant barriers to methanol crossover in direct methanol fuel cells.

Fabrication of 5kW Polymer Electrolyte Fuel Cell Stack and Operating System (5kW급 고분자 연료전지 스택 및 운전 시스템의 개발)

  • 전영갑;김창수;백동현;신동렬
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.233-238
    • /
    • 1999
  • 고분자 연료전지 (polymer electrolyte membrane fuel cell (PEMFC)) 시스템은 연료전지 스택, 연료공급부, 공기공급부, 냉각부, 운전 제어부, 전자부하 및 데이터 획득부 그리고 인버터 등으로 구성된다. 이 가운데 가장 중요한 구성요소인 고분자 연료전지 스택의 성능은 전극과 전해질막 접합체의 성능뿐만 아니라 스택의 구조와 유로형상에도 크게 의존한다. 따라서 보다 고성능의 전해질막과 전극을 개발하고 소형화, 경량화가 가능한 스택의 구조와 유로형상을 찾는 것이 고분자 연료전지 스택의 개발에 있어 매우 중요하다.(중략)

  • PDF

A Study on the Performance of the Polymer Electrolyte Membrane Fuel Cell Using the Metal Bipolar Plates (금속분리판을 이용한 고분자전해질 연료전지의 성능에 관한 연구)

  • Jeon, U.-S.;Cho, E.A.;Ha, H.-Y.;Hong, S.-A.;Oh, I.-H.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.313-320
    • /
    • 2002
  • The characteristics of the AISI bipolar plates have been investigated to replace the expensive graphite bipolar plates. It was found from the contact resistance evaluation of graphites, composites, and AISI that the contact resistance of AISI was the lowest, but it could approach to that of composites at higher compression forces. The single cell operation using the AISI bipolar plates revealed that the lower performance of the AISI single cell compared to the graphite one was due to not only the higher contact resistance but the flooding effect caused by high wettability of AISI. The performance of the AISI single cell could be improved if the channels were modified appropriately. The large size AISI single cell was operated to investigated the size effect on the performance.