Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.6.427

Research Trends on Improvement of Physicochemical Properties of Sulfonated Hydrocarbon Polymer-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications  

Inhyeok, Hwang (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Davin, Choi (Department of Materials Science and Engineering, Gyeongsang National University)
Kihyun, Kim (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Membrane Journal / v.32, no.6, 2022 , pp. 427-441 More about this Journal
Abstract
Polymer electrolyte membrane (PEM) serving as a separator that can prevent the permeation of unreacted fuels as well as an electrolyte that selectively transports protons from the anode to the cathode has been considered a key component of polymer electrolyte membrane fuel cell (PEMFC). The perfluorinated sulfonic acid-based PEMs, represented by Nafion®, have been commercialized in PEMFC systems due to their high proton conductivity and chemical stability. Nevertheless, these PEMs have several inherent drawbacks including high manufacturing costs by the complex synthetic processes and environmental problems caused by producing the toxic gases. Although numerous studies are underway to address these drawbacks including the development of sulfonated hydrocarbon polymer-based PEMs (SHP-PEMs), which can easily control the polymer structures, further improvement of PEM performances and durability is necessary for practical PEMFC applications. Therefore, this study focused on the various strategies for the development of SHP-PEMs with outstanding performance and durability by 1) introducing cross-linked structures, 2) incorporating organic/inorganic composites, and 3) fabricating reinforced-composite membranes using porous substrates.
Keywords
polymer electrolyte membrane fuel cells; polymer electrolyte membrane; cross-linked membrane; organic/inorganic composite membrane; reinforced composite membrane;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 F. J. Pinar, P. Canizares, M. A. Rodrigo, D. Ubeda, and J. Lobato, "Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount", RSC Adv., 2, 1547 (2012).
2 P. Salarizadeh, M. Javanbakht, and S. Pourmahdian, "Enhancing the performance of SPEEK polymer electrolyte membranes using functionalized TiO2 nanoparticles with proton hopping sites", RSC Adv., 7, 8303 (2017).
3 S. Sambandam and V. Ramani, "SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells", J. Power Sources, 170, 259 (2007).
4 Z. Jiang, X. Zhao, and A. Manthiram, "Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells", Int. J. Hydrog. Energy., 38, 5875 (2013).
5 M. L. Di Vona, E. Sgreccia, A. Donnadio, M. Casciola, J. F. Chailan, G. Auer, and P. Knauth, "Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO2", J. Membr. Sci., 369, 536 (2011).
6 D. J. Kim and S. Y. Nam, "Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell", Membr. J., 22, 155 (2012).
7 H. Lade, V. Kumar, G. Arthanareeswaran, and A. F. Ismail, "Sulfonated poly(arylene ether sulfone) nanocomposite electrolyte membrane for fuel cell applications: A review", Int. J. Hydrog. Energy., 42, 1063 (2017).
8 Y. M. Kim, S. H. Choi, H. C. Lee, M. Z. Hong, K. Kim, and H.-I. Lee, "Organic-inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs)", Electrochim. Acta, 49, 4787 (2004).
9 M. N. Kim, Y. W. Choi, T. Y. Kim, M. S. Lee, T. H. Yang, C. S. Kim, and K. S. Nam, "Characterization of sulfonated ploy(aryl ether sulfone) membranes impregnated with sulfated ZrO2", Membr. J., 21, 30 (2011).
10 M. S. Shin, D. E. Kim, and J. S. Park, "Preparation and characterizations of poly(arylene ether sulfone)/SiO2 composite membranes for polymer electrolyte fuel cell", Membr. J., 27, 182 (2017).
11 C. H. Lee, K. A. Min, H. B. Park, Y. T. Hong, B. O. Jung, and Y. M. Lee, "Sulfonated poly(arylene ether sulfone)-silica nanocomposite membrane for direct methanol fuel cell (DMFC)", J. Membr. Sci., 303, 258 (2007).
12 G. Yun, S. K. Kim, and I. S. Bae, "Development of composite membranes of sulfonated poly(ether ether ketone) and gadolinium-doped ceria nanoparticles for polymer electrolyte membrane fuel cells", Polymer, 46, 179 (2022).
13 R. Kannan, H. N. Kagalwala, H. D. Chaudhari, U. K. Kharul, S. Kurungot, and V. K. Pillai, "Improved performance of phosphonated carbon nanotube-polybenzimidazole composite membranes in proton exchange membrane fuel cells", J. Mater. Chem., 21, 7223 (2011).
14 M. S. Shin, M. S. Kang, and J. S. Park, "Preparation and characterizations of sulfonated graphene oxide (sGO)/Nafion composite membranes for polymer electrolyte fuel cells", Membr. J., 27, 53 (2017).
15 J. I. Lee and H. T. Jung, "Technical status of carbon nanotubes composites", Korean Chem. Eng. Res, 46, 7 (2008).
16 N. Guerrero Moreno, D. Gervasio, A. Godinez Garcia, and J. F. Perez Robles, "Polybenzimidazolemultiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells", J. Power Sources, 300, 229 (2015).
17 H. Y. Jung, M. W. Kim, J. H. Lim, J. H. Choi, and S. H. Roh, "The effect of sGO content in sPEEK/sGO composite membrane for unitized regenerative fuel cell", KEPCO Journal on electric power and energy, 2, 127 (2016).
18 J.-R. Lee, J.-H. Won, N.-Y. Kim, M.-S. Lee, and S.-Y. Lee, "Hydrophilicity/porous structure-tuned, SiO2/polyetherimide-coated polyimide nonwoven porous substrates for reinforced composite proton exchange membranes", J. Colloid Interface Sci., 362, 607 (2011).
19 M. P. Rodgers, J. Berring, S. Holdcroft, and Z. Shi, "The effect of spatial confinement of Nafion(R) in porous membranes on macroscopic properties of the membrane", J. Membr. Sci., 321, 100 (2008).
20 L. Wang, B. Yi, H. Zhang, Y. Liu, D. Xing, Z.-G. Shao, and Y. Cai, "Sulfonated polyimide/PTFE reinforced membrane for PEMFCs", J. Power Sources, 167, 47 (2007).
21 T. Yamaguchi, F. Miyata, and S.-i. Nakao, "Porefilling type polymer electrolyte membranes for a direct methanol fuel cell", J. Membr. Sci., 214, 283 (2003).
22 H.-B. Song, J.-H. Park, J.-S. Park, and M.-S. Kang, "Pore-filled proton-exchange membranes with fluorinated moiety for fuel cell application", Energies, 14, 4433 (2021).
23 R. M. Penner and C. R. Martin, "Ion Transporting Composite Membranes. I. Nafion Impregnated Gore-Tex", J. Electrochem. Soc., 132, 514 (1985).
24 K.-H. Kim, S.-Y. Ahn, I.-H. Oh, H. Y. Ha, S.-A. Hong, M.-S. Kim, Y. Lee, and Y.-C. Lee, "Characteristics of the Nafion(R)-impregnated polycarbonate composite membranes for PEMFCs", Electrochim. Acta, 50, 577 (2004).
25 J. Shim, H. Y. Ha, S.-A. Hong, and I.-H. Oh, "Characteristics of the Nafion ionomer-impregnated composite membrane for polymer electrolyte fuel cells", J. Power Sources, 109, 412 (2002).
26 T. H. Nguyen, C. Wang, and X. Wang, "Pore-filling membrane for direct methanol fuel cells based on sulfonated poly (styrene-ran-ethylene) and porous polyimide matrix", J. Membr. Sci., 342, 208 (2009).
27 G.-C. Park and D. Kim, "Porous PTFE reinforced SPEEK proton exchange membranes for enhanced mechanical, dimensional, and electrochemical stability", Polymer, 218, 123506 (2021).
28 H. Tang, M. Pan, F. Wang, P. K. Shen, and S. P. Jiang, "Highly durable proton exchange membranes for low temperature fuel cells", J. Phys. Chem. B, 111, 8684 (2007).
29 T. Tezuka, K. Tadanaga, A. Matsuda, A. Hayashi, and M. Tatsumisago, "Utilization of glass paper as a support of proton conductive inorganic-organic hybrid membranes based on 3-glycidoxypropyltrimethoxysilane", Electrochem. Commun., 7, 245 (2005).
30 T. Nguyen and X. Wang, "Multifunctional composite membrane based on a highly porous polyimide matrix for direct methanol fuel cells", J. Power Sources, 195, 1024 (2010).
31 K. Kim, S.-K. Kim, J. O. Park, S.-W. Choi, K.-H. Kim, T. Ko, C. Pak, and J.-C. Lee, "Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells", J. Membr. Sci., 537, 11 (2017).
32 W. R. W. Daud, R. E. Rosli, E. H. Majlan, S. A. A. Hamid, R. Mohamed, and T. Husaini, "PEM fuel cell system control: A review", Renew. Energ., 113, 620 (2017).
33 J. Graetz, "New approaches to hydrogen storage", Chem. Soc. Rev., 38, 73 (2009).
34 F. Qureshi, M. Yusuf, H. Kamyab, D.-V. N. Vo, S. Chelliapan, S.-W. Joo, and Y. Vasseghian, "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives", Renew. Sust. Energ. Rev., 168, 112916 (2022).
35 S. Erce, H. Erdener, R. G. Akay, H. Yucel, N. Bac, and I. Eroglu, "Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance", Int. J. Hydrog. Energy., 34, 4645 (2009).
36 R. K. Shah, U. Desideri, K.-L. Hsueh, and A. V. Vikar, "Research opportunities and challenges in fuel cell science and engineering", in Proceedings of the 4th Baltic Heat Transfer Conference, Kaunas, Lithuania (2003).
37 R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, and D. Wood, "Scientific aspects of polymer electrolyte fuel cell durability and degradation", Chem. Rev., 107, 3904 (2007).
38 S.-H. Park, Y.-W. Choi, and J.-S. Park, "Characterization of sulfonated poly(styrene-copyrrolidone) pore-filling membranes for fuel cell applications", J. Appl. Electrochem., 41, 849 (2011).
39 S. Lu, R. Xiu, X. Xu, D. Liang, H. Wang, and Y. Xiang, "Polytetrafluoroethylene (PTFE) reinforced poly(ethersulphone)-poly(vinyl pyrrolidone) composite membrane for high temperature proton exchange membrane fuel cells", J. Membr. Sci., 464, 1 (2014).
40 X. Xu, H. Wang, S. Lu, Z. Guo, S. Rao, R. Xiu, nd Y. Xiang, "A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells", J. Power Sources, 286, 458 (2015).
41 S. J. Hamrock and M. A. Yandrasits, "Proton exchange membranes for fuel cell applications", Polym. Rev., 46, 219 (2006).
42 P. C. Okonkwo, I. B. Belgacem, W. Emori, and P. C. Uzoma, "Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review", Int. J. Hydrog. Energy., 46, 27956 (2021).
43 K. A. Mauritz and R. B. Moore, "State of understanding of Nafion", Chem. Rev., 104, 4535 (2004).
44 H. Ko, M. Kim, S. Y. Nam, and K. Kim, "Research of Cross-linked Hydrocarbon based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications", Membr. J., 30, 395 (2020).
45 Y. S. Kim, B. Einsla, M. Sankir, W. Harrison, and B. S. Pivovar, "Structure-property-performance relationships of sulfonated poly (arylene ether sulfone) s as a polymer electrolyte for fuel cell applications", Polymer, 47, 4026 (2006).
46 P. P. Sharma, V. D. C. Tinh, and D. Kim, "Enhanced ion cluster size of sulfonated poly (arylene ether sulfone) for proton exchange membrane fuel cell application", Polymers, 13, 1111 (2021).
47 J. E. Park, J. Kim, J. Han, K. Kim, S. Park, S. Kim, H. S. Park, Y.-H. Cho, J.-C. Lee, and Y.-E. Sung, "High-performance proton-exchange membrane water electrolysis using a sulfonated poly (arylene ether sulfone) membrane and ionomer", J. Membr. Sci., 620, 118871 (2021).
48 M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Study on control of polymeric architecture of sulfonated hydrocarbon-based polymers for high-performance polymer electrolyte membranes in fuel cell applications", Polymers, 13, 3520 (2021).
49 G. Wei, L. Xu, C. Huang, and Y. Wang, "SPE water electrolysis with SPEEK/PES blend membrane", Int. J. Hydrog. Energy., 35, 7778 (2010).
50 C. Klose, T. Saatkamp, A. Munchinger, L. Bohn, G. Titvinidze, M. Breitwieser, K. D. Kreuer, and S. Vierrath, "All-hydrocarbon MEA for PEM water electrolysis combining low hydrogen crossover and high efficiency", Adv. Energy Mater., 10, 1903995 (2020).
51 K. Kim, P. Heo, T. Ko, and J.-C. Lee, "Semi-interpenetrating network electrolyte membranes based on sulfonated poly (arylene ether sulfone) for fuel cells at high temperature and low humidity conditions", Electrochem. Commun., 48, 44 (2014).
52 M.S. Jung, T.-H. Kim, Y. J. Yoon, C. G. Kang, D. M. Yu, J. Y. Lee, H.-J. Kim, and Y. T. Hong, "Sulfonated poly (arylene sulfone) multiblock copolymers for proton exchange membrane fuel cells", J. Membr. Sci., 459, 72 (2014).
53 Y. Yin, O. Yamada, K. Tanaka, and K.-I. Okamoto, "On the development of naphthalene-based sulfonated polyimide membranes for fuel cell applications", Polym. J., 38, 197 (2006).
54 X. Pu, Y. Duan, J. Li, C. Ru, and C. Zhao, "Understanding of hydrocarbon ionomers in catalyst layers for enhancing the performance and durability of proton exchange membrane fuel cells", J. Power Sources, 493, 229671 (2021).
55 J. Peron, Z. Shi, and S. Holdcroft, "Hydrocarbon proton conducting polymers for fuel cell catalyst layers", Energy Environ Sci, 4, 1575 (2011).
56 L. Li and Y. Wang, "Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell", J. Membr. Sci., 246, 167 (2005).
57 B. Yang and A. Manthiram, "Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cells", Electrochem. Solid-State Lett., 6, A229 (2003).
58 T. Ko, K. Kim, B.-K. Jung, S.-H. Cha, S.-K. Kim, and J.-C. Lee, "Cross-linked sulfonated poly (arylene ether sulfone) membranes formed by in situ casting and click reaction for applications in fuel cells", Macromolecules, 48, 1104 (2015).
59 Y. S. Kim, F. Wang, M. Hickner, S. McCartney, Y. T. Hong, W. Harrison, T. A. Zawodzinski, and J. E. McGrath, "Effect of acidification treatment and morphological stability of sulfonated poly (arylene ether sulfone) copolymer proton-exchange membranes for fuel-cell use above 100 ℃", J. Polym. Sci., Part B: Polym. Phys., 41, 2816 (2003).
60 J. Han, K. Kim, S. Kim, H. Lee, J. Kim, T. Ko, J. Bae, W. J. Choi, Y.-E. Sung, and J.-C. Lee, "Cross-linked sulfonated poly (ether ether ketone) membranes formed by poly (2, 5-benzimidazole)-grafted graphene oxide as a novel cross-linker for direct methanol fuel cell applications", J. Power Sources, 448, 227427 (2020).
61 Harilal, R. Nayak, P. C. Ghosh, and T. Jana, "Cross-linked polybenzimidazole membrane for PEM fuel cells", ACS Appl. Polym. Mater., 2, 3161 (2020).
62 S. Ryu, B. Lee, J. H. Kim, C. Pak, and S. H. Moon, "High-temperature operation of PEMFC using pore-filling PTFE/Nafion composite membrane treated with electric field", Int. J. Energy Res., 45, 19136 (2021).
63 H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, and H. Na, "Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance", J. Membr. Sci., 308, 66 (2008).
64 L. Li, J. Zhang, and Y. Wang, "Sulfonated poly (ether ether ketone) membranes for direct methanol fuel cell", J. Membr. Sci., 226, 159 (2003).
65 D. M. Xing, B. L. Yi, F. Q. Liu, Y. Z. Fu, and H. M. Zhang, "Characterization of Sulfonated Poly (Ether Ether Ketone)/Polytetrafluoroethylene Composite Membranes for Fuel Cell Applications", Fuel Cells, 5, 406 (2005).
66 H. Hou, B. Maranesi, J.-F. Chailan, M. Khadhraoui, R. Polini, M. L. Di Vona, and P. Knauth, "Crosslinked SPEEK membranes: Mechanical, thermal, and hydrothermal properties", J. Mater. Res., 27, 1950 (2012).
67 J. Qiao, T. Hamaya, and T. Okada, "New highly proton-conducting membrane poly(vinylpyrrolidone) (PVP) modified poly(vinyl alcohol)/2-acrylamido-2-methyl-1-propanesulfonic acid (PVA-PAMPS) for low temperature direct methanol fuel cells (DMFCs)", Polymer, 46, 10809 (2005).
68 H. S. Byun, K. S. Yoon, J. H. Choi, J. K. Choi, S. K. Hong, and Y. T. Hong, "Fabrication and Characteristics of Partially Covalent-crosslinked Poly(arylene ether sulfone)s for Use in a Fuel Cell", Membr. J., 18, 274 (2008).
69 H. Li, G. Zhang, J. Wu, C. Zhao, Y. Zhang, K. Shao, M. Han, H. Lin, J. Zhu, and H. Na, "A novel sulfonated poly(ether ether ketone) and crosslinked membranes for fuel cells", J. Power Sources, 195, 6443 (2010).
70 K. S. Lee, M.-H. Jeong, J.-P. Lee, and J.-S. Lee, "End-group cross-linked poly(arylene ether) for proton exchange membranes", Macromolecules, 42, 584 (2009).
71 N. R. Kang, S. Y. Lee, D. W. Shin, D. S. Hwang, K. H. Lee, D. H. Cho, J. H. Kim, and Y. M. Lee, "Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes", J. Power Sources, 307, 834 (2016).
72 K. Kim, P. Heo, J. Han, J. Kim, and J.-C. Lee, "End-group cross-linked sulfonated poly(arylene ether sulfone) via thiol-ene click reaction for high-performance proton exchange membrane", J. Power Sources, 401, 20 (2018).
73 J. A. Kerres, "Development of ionomer membranes for fuel cells", J. Membr. Sci., 185, 3 (2001).   DOI
74 J. Kerres, C.-M. Tang, and C. Graf, "Improvement of properties of poly(ether ketone) ionomer membranes by blending and cross-linking", Ind. Eng. Chem. Res, 43, 4571 (2004).
75 S. J. Oh, "A Study on the Properties of sPEEK Electrolytic Membranes using Physical Crosslinking", Journal of Korea Academia-Industrial cooperation Society, 17, 433 (2016).
76 I. Y. jang, D. Y. Jang, O. H. Kwon, K. E. Kim, G. J. Hwang, K. S. Sim, K. K. Bae, and A. S. Kang, "Cross-linking of acid-base composite solid polymer electrolyte membranes with PEEK and PSf", Transactions of the Korean Hydrogen and New Energy Society, 17, 149 (2006).
77 N. S. Kwak, E. J. Choi, and T. S. Hwang, "Preparation and properties of sulfonated poly(ether ether ketone) (SPEEK) electrospun nanofibrous ion-exchange membrane for PEMFC", Polymer, 36, 155 (2012).
78 J. V. Gasa, R. A. Weiss, and M. T. Shaw, "Ionic crosslinking of ionomer polymer electrolyte membranes using barium cations", J. Membr. Sci., 304, 173 (2007).   DOI