Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.6.395

Research of Cross-linked Hydrocarbon based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications  

Ko, Hansol (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Kim, Mijeong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Kim, Kihyun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Membrane Journal / v.30, no.6, 2020 , pp. 395-408 More about this Journal
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) have gained much attention as eco-friendly energy conversion devices without emission of environmental pollutant. Polymer electrolyte membrane (PEM) that can transfer proton from anode to cathode and also prevent fuel cross-over has been regarded as a key component of PEMFCs. Although perfluorinated polymer membranes such as Nafion® were already commercialized in PEMFCs, their high cost and toxic byproduct generated by degradation have still limited the wide spread of PEMFCs. To overcome these issues, development of hydrocarbon based PEMs have been studied. Incorporation of cross-linked structure into the hydrocarbon based PEM system has been reported to fabricate the PEMs showing both high proton conductivity and outstanding physicochemical stability. This study focused on the various cross-linking strategies to the preparation of cross-linked PEMs based on hydrocarbon polymers with ion conducting groups for application in PEMFCs.
Keywords
polymer electrolyte membrane fuel cell; cross-linked membrane; perfluorinated polymer; hydrocarbon polymer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Commissie, "A Roadmap for moving to a competitive low carbon economy in 2050", Europese Commissie, Brussel (2011).
2 V. UNFCCC, "Adoption of the Paris agreement", Proposal by the President (2015).
3 S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-T. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges", Progress in Polymer Science, 36, 813 (2011).   DOI
4 W. Daud, R. Rosli, E. Majlan, S. Hamid, R. Mohamed, and T. Husaini, "PEM fuel cell system control: A review", Renew. Energy, 113, 620 (2017).   DOI
5 M. Zaton, J. Roziere, and D. Jones, "Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: A review", Sustain. Energy Fuels, 1, 409 (2017).   DOI
6 K. A. Mauritz and R. B. J. C. r. Moore, "State of understanding of Nafion", Phys. Chem. Chem. Phys., 104, 4535 (2004).
7 A. Vitale, R. Bongiovanni, and B. J. C. r. Ameduri, "Fluorinated oligomers and polymers in photopolymerization", Chem. Rev., 115, 8835 (2015).   DOI
8 D. A. Schiraldi, "Perfluorinated polymer electrolyte membrane durability", J. Macromol. Sci. Polymer Rev., 46, 315 (2006).   DOI
9 F. M. Hekster, R. W. Laane, and P. De Voogt, "Environmental and toxicity effects of perfluoroalkylated substances", Rev. Environ. Contam. Toxicol., 99 (2003).
10 J. Serpico, S. Ehrenberg, J. Fontanella, X. Jiao, D. Perahia, K. McGrady, E. Sanders, G. Kellogg, and G. J. M. Wnek, "Transport and structural studies of sulfonated styrene-ethylene copolymer membranes", Macromolecules, 35, 5916 (2002).   DOI
11 C. Genies, R. Mercier, B. Sillion, N. Cornet, G. Gebel, and M. J. P. Pineri, "Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes", Polymer, 42, 359 (2001).   DOI
12 K. Miyatake and A. S. J. J. o. P. S. P. A. P. C. Hay, "Synthesis and properties of poly(arylene ether) s bearing sulfonic acid groups on pendant phenyl rings", Polym. Chem., 39, 3211 (2001).   DOI
13 K. Kim, P. Heo, T. Ko, and J.-C. Lee, "Semi-interpenetrating network electrolyte membranes based on sulfonated poly(arylene ether sulfone) for fuel cells at high temperature and low humidity conditions", Electrochem. Commun., 48, 44 (2014).   DOI
14 Y. Woo, S. Y. Oh, Y. S. Kang, and B. Jung, "Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell", J. Membr. Sci., 220, 31 (2003).   DOI
15 K. Kim, J. Bae, M.-Y. Lim, P. Heo, S.-W. Choi, H.-H. Kwon, and J.-C. Lee, "Enhanced physical stability and chemical durability of sulfonated poly (arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications", J. Membr. Sci., 525, 125 (2017).   DOI
16 S. Kaliaguine, S. Mikhailenko, K. Wang, P. Xing, G. Robertson, and M. Guiver, "Properties of SPEEK based PEMs for fuel cell application", Catal. Today, 82, 213 (2003).   DOI
17 S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, "Proton conducting membranes based on Cross-linked sulfonated poly(ether ether ketone)(SPEEK)", J. Membr. Sci., 233, 93 (2004).   DOI
18 K. B. Wiles, C. M. de Diego, J. de Abajo, and J. E. McGrath, "Directly copolymerized partially fluorinated disulfonated poly(arylene ether sulfone) random copolymers for PEM fuel cell systems: Synthesis, fabrication and characterization of membranes and membrane-electrode assemblies for fuel cell applications", J. Membr. Sci., 294, 22 (2007).   DOI
19 Y. Yin, O. Yamada, K. Tanaka, and K.-I. Okamoto, "On the development of naphthalene-based sulfonated polyimide membranes for fuel cell applications", Polym. J., 38, 197 (2006).   DOI
20 C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011).   DOI
21 H. Hou, M. L. Di Vona, and P. Knauth, "Building bridges: Crosslinking of sulfonated aromatic polymers - A review", J. Membr. Sci., 423-424, 113 (2012).   DOI
22 B. Yang, A. J. E. Manthiram, and S. S. Letters, "Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells", Electrochem. Solid-State Lett., 6, A229 (2003).   DOI
23 K. Kim, S.-K. Kim, J. O. Park, S.-W. Choi, K.-H. Kim, T. Ko, C. Pak, and J.-C. Lee, "Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells", J. Membr. Sci., 537, 11 (2017).   DOI
24 L. Li and Y. J. J. o. m. s. Wang, "Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell", J. Membr. Sci., 246, 167 (2005).   DOI
25 H. Li, G. Zhang, J. Wu, C. Zhao, Q. Jia, C. M. Lew, L. Zhang, Y. Zhang, M. Han, and J. J. J. o. P. S. Zhu, "A facile approach to prepare self-crosslinkable sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells", J. Power Sources, 195, 8061 (2010).   DOI
26 J. Han, K. Kim, J. Kim, S. Kim, S.-W. Choi, H. Lee, J.-j. Kim, T.-H. Kim, Y.-E. Sung, and J.-C. Lee, "Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application", J. Membr. Sci., 579, 70 (2019).   DOI
27 M. Kido, Z. Hu, T. Ogo, Y. Suto, K.-i. Okamoto, and J. Fang, "Novel preparation method of crosslinked sulfonated polyimide membranes for fuel cell application", Chem. Lett., 36, 272 (2007).   DOI
28 M. Li, G. Zhang, S. Xu, C. Zhao, M. Han, L. Zhang, H. Jiang, Z. Liu, and H. Na, "Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker", J. Power Sources, 255, 101 (2014).   DOI
29 K. Si, R. Wycisk, D. Dong, K. Cooper, M. Rodgers, P. Brooker, D. Slattery, and M. Litt, "Rigid-rod poly(phenylenesulfonic acid) proton exchange membranes with cross-linkable biphenyl groups for fuel cell applications", Macromolecules, 46, 422 (2013).   DOI
30 S.-K. Kim, T.-H. Kim, T. Ko, and J.-C. Lee, "Crosslinked poly(2,5-benzimidazole) consisting of wholly aromatic groups for high-temperature PEM fuel cell applications", J. Membr. Sci., 373, 80 (2011).   DOI
31 K. Nakabayashi, T. Higashihara, and M. Ueda, "Polymer electrolyte membranes based on crosslinked highly sulfonated multiblock copoly(ether sulfone)s", Macromolecules, 43, 5756 (2010).   DOI
32 M. Schuster, K.-D. Kreuer, H. T. Andersen, and J. J. M. Maier, "Sulfonated poly(phenylene sulfone) polymers as hydrolytically and thermooxidatively stable proton conducting ionomers", Macromolecules, 40, 598 (2007).   DOI
33 C. Zhang, X. Guo, J. Fang, H. Xu, M. Yuan, and B. Chen, "A new and facile approach for the preparation of Cross-linked sulfonated poly(sulfide sulfone) membranes for fuel cell application", J. Power Sources, 170, 42 (2007).   DOI
34 M. Song, X. Lu, Z. Li, G. Liu, X. Yin, and Y. Wang, "Compatible ionic crosslinking composite membranes based on SPEEK and PBI for high temperature proton exchange membranes", Int. J. Hydrog. Energy, 41, 12069 (2016).   DOI
35 H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, and H. Na, "Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance", J. Membr. Sci., 308, 66 (2008).   DOI
36 J. Wang, C. Zhao, G. Zhang, Y. Zhang, J. Ni, W. Ma, and H. J. J. o. M. S. Na, "Novel covalentionically Cross-linked membranes with extremely low water swelling and methanol crossover for direct methanol fuel cell applications", J. Membr. Sci., 363, 112 (2010).   DOI
37 M. Han, G. Zhang, K. Shao, H. Li, Y. Zhang, M. Li, S. Wang, and H. J. J. o. M. C. Na, "Carboxyl-terminated benzimidazole-assisted Cross-linked sulfonated poly(ether ether ketone)s for highly conductive PEM with low water uptake and methanol permeability", J. Mater. Chem., 20, 3246 (2010).   DOI
38 S. Zhong, X. Cui, H. Cai, T. Fu, C. Zhao, and H. J. J. o. P. S. Na, "Crosslinked sulfonated poly (ether ether ketone) proton exchange membranes for direct methanol fuel cell applications", J. Power Sources, 164, 65 (2007).   DOI
39 K.-S. Lee, M.-H. Jeong, Y.-J. Kim, S.-B. Lee, and J.-S. Lee, "Fluorinated aromatic polyether ionomers containing perfluorocyclobutyl as cross-link groups for fuel cell applications", Chem. Mater., 24, 1443 (2012).   DOI
40 K. D. Papadimitriou, F. Paloukis, S. G. Neophytides, and J. K. J. M. Kallitsis, "Cross-linking of side chain unsaturated aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications", Macromolecules, 44, 4942 (2011).   DOI
41 C. Liu, Z. Wu, Y. Xu, S. Zhang, C. Gong, Y. Tang, D. Sun, H. Wei, and C. Shen, "Facile onestep fabrication of sulfonated polyhedral oligomeric silsesquioxane Cross-linked poly(ether ether ketone) for proton exchange membranes", Polym. Chem., 9, 3624 (2018).   DOI
42 Y. Zhang, X. Fei, G. Zhang, H. Li, K. Shao, J. Zhu, C. Zhao, Z. Liu, M. Han, and H. Na, "Preparation and properties of epoxy-based Cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane for direct methanol fuel cell applications", Int. J. Hydrog. Energy, 35, 6409 (2010).   DOI
43 C. Zhao, H. Lin, M. Han, and H. Na, "Covalently Cross-linked proton exchange membranes based on sulfonated poly(arylene ether ketone) and polybenzimidazole oligomer", J. Membr. Sci., 353, 10 (2010).   DOI
44 J.-y. Park, T.-H. Kim, H. J. Kim, J.-H. Choi, and Y. T. Hong, "Crosslinked sulfonated poly(arylene ether sulfone) membranes for fuel cell application", Int. J. Hydrog. Energy, 37, 2603 (2012).   DOI
45 D. S. Phu, C. H. Lee, C. H. Park, S. Y. Lee, and Y. M. Lee, "Synthesis of crosslinked sulfonated poly(phenylene sulfide sulfone nitrile) for direct methanol fuel cell applications", Macromol. Rapid. Commun., 30, 64 (2009).   DOI
46 H. Li, G. Zhang, J. Wu, C. Zhao, Y. Zhang, K. Shao, M. Han, H. Lin, J. Zhu, and H. Na, "A novel sulfonated poly(ether ether ketone) and Cross-linked membranes for fuel cells", J. Power Sources, 195, 6443 (2010).   DOI
47 W. Ma, C. Zhao, J. Yang, J. Ni, S. Wang, N. Zhang, H. Lin, J. Wang, G. Zhang, Q. Li, and H. Na, "Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications", Energy Environ. Sci., 5, (2012).
48 K. Kim, P. Heo, W. Hwang, J. H. Baik, Y. E. Sung, and J. C. Lee, "Cross-linked sulfonated poly (arylene ether sulfone) containing a flexible and hydrophobic bishydroxy perfluoropolyether crosslinker for high-performance proton exchange membrane", ACS Appl. Mater. Interfaces, 10, 21788 (2018).   DOI
49 T. Ko, K. Kim, B.-K. Jung, S.-H. Cha, S.-K. Kim, and J.-C. Lee, "Cross-linked sulfonated poly(arylene ether sulfone) membranes formed by in situ casting and click reaction for applications in fuel cells", Macromolecules, 48, 1104 (2015).   DOI
50 M. Han, G. Zhang, M. Li, S. Wang, Y. Zhang, H. Li, C. M. Lew, and H. Na, "Considerations of the morphology in the design of proton exchange membranes: Cross-linked sulfonated poly(ether ether ketone)s using a new carboxyl-terminated benzimidazole as the cross-linker for PEMFCs", Int. J. Hydrog. Energy, 36, 2197 (2011).   DOI
51 W. H. Lee, K. H. Lee, D. W. Shin, D. S. Hwang, N. R. Kang, D. H. Cho, J. H. Kim, and Y. M. J. J. o. P. S. Lee, "Dually Cross-linked polymer electrolyte membranes for direct methanol fuel cells", J. Power Sources, 282, 211 (2015).   DOI
52 M. Li, G. Zhang, H. Zuo, M. Han, C. Zhao, H. Jiang, Z. Liu, L. Zhang, and H. J. J. o. m. s. Na, "End-group Cross-linked polybenzimidazole blend membranes for high temperature proton exchange membrane", J. Membr. Sci., 423, 495 (2012).   DOI
53 J. Kim, K. Kim, J. Han, H. Lee, H. Kim, S. Kim, Y. E. Sung, and J. C. J. J. o. P. S. P. A. P. C. Lee, "End group Cross-linked membranes based on highly sulfonated poly(arylene ether sulfone) with vinyl functionalized graphene oxide as a cross-linker and a filler for proton exchange membrane fuel cell application", J. Polym. Sci., 58, 3456, (2020)
54 S. Y. Lee, N. R. Kang, D. W. Shin, C. H. Lee, K.-S. Lee, M. D. Guiver, N. Li, Y. M. J. E. Lee, and E. Science, "Morphological transformation during cross-linking of a highly sulfonated poly(phenylene sulfide nitrile) random copolymer", Energy Environ. Sci., 5, 9795 (2012).   DOI
55 D. W. Shin, S. Y. Lee, N. R. Kang, K. H. Lee, D. H. Cho, M. J. Lee, Y. M. Lee, and K. J. I. j. o. h. e. Do Suh, "Effect of crosslinking on the durability and electrochemical performance of sulfonated aromatic polymer membranes at elevated temperatures", Int. J. Hydrog. Energy, 39, 4459 (2014).   DOI
56 N. R. Kang, S. Y. Lee, D. W. Shin, D. S. Hwang, K. H. Lee, D. H. Cho, J. H. Kim, and Y. M. Lee, "Effect of end-group cross-linking on transport properties of sulfonated poly(phenylene sulfide nitrile)s for proton exchange membranes", J. Power Sources, 307, 834 (2016).   DOI
57 K. Kim, P. Heo, J. Han, J. Kim, and J.-C. Lee, "End-group Cross-linked sulfonated poly(arylene ether sulfone) via thiolene click reaction for high-performance proton exchange membrane", J. Power Sources, 401, 20 (2018).   DOI
58 K.-S. Lee, M.-H. Jeong, J.-P. Lee, and J.-S. Lee, "End-group Cross-linked poly(arylene ether) for proton exchange membranes", Macromolecules, 42, 584 (2009).   DOI