• 제목/요약/키워드: Polymer Actuator

검색결과 176건 처리시간 0.026초

이온성고분자액추에이터의 전기화학적 지배방정식의 유한요소모델링 (Finite Element Modeling of Electrochemical Governing Equations for Ionic Polymer Actuators)

  • 강성수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.759-767
    • /
    • 2008
  • Bending deformation of an ionic polymer actuator(IPA) on applied low electric field across its thickness is dominated by electroosmosis of hydrated ions and self-diffusion of free water molecules. In the study by Popovic et al., two processes are assumed to occur sequentially in the way that fast electroosmosis is followed by self-diffusion and finite element formulation for the basic field equations are proposed. However the motions of hydrated ions and water molecules occur at the same time. In this study, those two processes are considered simultaneously and finite element formulation is conducted for the basic field equations governing electrochemical response of an IPA. Some numerical studies for IPA are carried out in order to show the validity of the present formulation.

유전성 탄성체를 이용한 전기변형 고분자 구동체의 특성 연구 (A Study of Electrostrictive Polymer(EP) Actuator Using Dielectric Elastomers)

  • 황성덕;이경섭;김홍경;최혁렬;김훈모;전재욱;이영관;남재도
    • 폴리머
    • /
    • 제26권1호
    • /
    • pp.113-120
    • /
    • 2002
  • 전기변형(electrostriction)이란 물체에 전압을 인가했을 때 맥스웰 응력이 나타나고, 이로 인하여 물체가 변형되는 현상을 말한다. 이러한 성질은 대부분의 유전체에서 나타나는데, 특히 탄성계수가 낮은 엘라스토머에 적용하면 전기에너지가 효율적으로 변환되어 큰 변형과 힘을 발현한다. 이렇게 전기변형을 크게 일으키는 고분자를 전기변형 고분자(electrostrictive polymer, EP)로 분류하며, 이들은 구동체 및 센서, 인공근육, 음향전달 장치 분야로의 활용이 유망한 재료로 예견되고 있다. 본 연구에서는 폴리우레탄과 아크릴 고무 등의 유전성 탄성체(dielectric elastomer)를 이용하여 전극-EP-전극의 적층을 이루는 유니모프 구동체를 제조하여 구동시켰고 주파수를 증가시키면서 작동시킬 때 구동체의 운동범위가 감소하는 현상을 전기적, 기계적으로 해석하고자 유전율과 탄성율을 주파수에 따라 측정하는 한편, 고전적 적층이론을 이용하여 EP의 구동역학을 모델링 하였다. 실험결과, 주파수 증가에 따른 구동체의 운동 변위 감소는 재료의 유전 완화시간과 밀접한 관계를 가졌음을 알 수 있었고, 고전적 적층이론으로 해석한 유니모프 구동체의 운동은 실제 적용한 우레탄 구동체의 운동과 상당히 유사한 거동을 보였다.

등가 보 및 등가 바이모프 보를 이용한 IPMC 작동기 모델링 (Equivalent Beam and Equivalent Bimorph Beam Models for ionic Polymer-Metal Composite Actuators)

  • 이상기;김광진;윤광준;박훈철
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1012-1016
    • /
    • 2004
  • In the present paper, equivalent beam and equivalent bimorph beam models for IPMC(ionic Polymer-Metal Composite) actuators are described. Physical properties of an IPMC, such as Young's modulus and electro-mechanical coupling coefficient. are determined from the rule of mixture, bimorph beam equations, and measured force-displacement data of a cantilevered IPMC actuator. By using a beam equation with estimated physical properties, actuation displacements of a cantilevered IPMC actuator was calculated and a good agreement between the computed tip displacements and the measured data was observed. Finite element analysis(FEA) combined with the estimated physical properties was used to reproduce the force-displacement relationship of an IPMC actuator. Results from the FEA agreed well with the measure data. The proposed models might be used for modeling of IPMC actuators with complicated shapes and boundary conditions.

마이크로 펌프 응용을 위한 이온성 고분자-금속 복합체를 이용한 멤브레인형 마이크로 액추에이터 제작에 관한 연구 (A Study on the Fabrication of a Membrane Type Micro=Actuator Using IPMC(Ionic Polymer-Metal Composite) for Micro-Pump Application)

  • 조성환;이승기;김병규;박정호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권7호
    • /
    • pp.298-304
    • /
    • 2003
  • IPMC(Ionic Polymer-Metal Composite) is a highly sensitive actuator that shows a large deformation in presence of low applied voltage. Generally, IPMC can be fabricated by electroless plating of platinum on both sides of a Nafion (perfluorosulfonic acid) film. When a commercial Nafion film is used as a base structure of the IPMC membrane, the micro-pump structure and the IPMC membrane are fabricated separately and then later assembled, which makes the fabrication inefficient. Therefore, fabrication of an IPMC membrane and the micro-pump structure on a single wafer without the need of assembly have been developed. The silicon wafer was partially etched to hold liquid Nafion to be casted and a 60-${\mu}{\textrm}{m}$ thick IPMC membrane was realized. IPMC membranes with various size were fabricated by casting and they showed 4-2${\mu}{\textrm}{m}$ displacements from $4mm{\times}4mm$ , $6mm{\times}6mm$, $8mm{\times}8mm$ membranes at the applied voltage ranging from 2Vp-p to 5Vp-p at 0.5Hz. The displacement of the fabricated IPMC membranes is fairly proportional to the membrane area and the applied voltage.

Artificial Muscle Actuator Based on the Synthetic Elastomer

  • Chuc, Nguyen Huu;Koo, Ja-Choon;Lee, Young-Kwan;Nam, Jae-Do;Choi, Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.894-903
    • /
    • 2008
  • In this paper, we present an artificial muscle actuator producing rectilinear motion, called the Tube-Spring-Actuator(TSA). The TSA is supposed to be a prospective substitute in areas requiring macro forces such as robotics. It is simply configured from a synthetic elastomer tube with an inserted spring. The design of the TSA is described in detail and its analysis is conducted to investigate the characteristics of the actuator based on the derived model. In addition, the performance of the proposed actuator is tested via experiments.

유전성 고분자를 이용한 생체모방형 구동기 (Biomimetic Actuator Based on Dielectric Polymer)

  • 정광목;류성무;구익모;전재욱;구자춘;남재도;이영관;최혁렬
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1271-1279
    • /
    • 2004
  • A new bio-mimetic actuator is proposed. The actuator realizes bidirectional actuation since it is with a stretched film antagonistically configured with compliant electrodes. Also, it is distinguished from existing actuators with respect to the controllability of its compliance. Bidirectional actuation and compliance controllability are important characteristics for the artificial muscle actuator and the proposed one accomplishes these requirements without any mechanical substitute or complicated algorithms. In this paper its basic concepts and working principles are introduced with static and dynamic analysis. Control strategies for displacement as well as stiffness are introduced and experimental results are given to confirm the effectiveness of the proposed methods. In addition, an example of robotic actuating devices is given to confirm the usefulness of the proposed actuator.

Five-DOF Polymer Actuator Based on Dielectric Elastomer

  • Kwangmok Jung;Lee, Sangwon;Jongwon Kwak;Kim, Hunmo;Jaedo Nam;Jaewook Jeon;Park, Hyoukryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.78.3-78
    • /
    • 2002
  • In this paper, we present a five-DOF actuator based on dielectric elastomer. The actuator is designed for generating five DOFs motions to drive a micro camera steering module and provides all the functions for controlling CCD array such as focusing, pan and tilting. Basic modeling of the actuator is performed, and simulation works and experimental verifications are conducted, too. The camera steering module includes most parts necessary for driving the actuator such as a micro-controller and DC-DC converter, etc. It can be operated with a personal computer using only communication lines without external power supply. A prototype is developed and its performance is experimentally proved. $\textbullet$ artificial muscle, EAP, actuator.

  • PDF

압전 작동기 거동해석을 위한 유한요소 모사 (Finite Element Analysis of A Piezoelectric Actuator)

  • 이흥식;조종두
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1401-1406
    • /
    • 2003
  • Mechanical behavior of a piezoelectric actuator is studied as a preceding research for the manufacturing of three-dimensional micro-structures. It is needed to examine the simulation of a piezoelectric actuator according to applied direction of voltage, by researching displacement characterization of piezoelectric material through piezoelectric theory. To this end, finite element modeling is employed to study the response of a piezoelectric material under the various input voltages. Where the actuator is simulated by use of ANSYS. To avoid direct contact piezoelectric material with working fluid, silicon, polymer, etc., the actuator is modeled with nickel fixed diaphragm.

  • PDF

Electrochemical Response of Polymer Actuators using Finite Element Formulation and ANSYS/Emag

  • Kang, Sung-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권3호
    • /
    • pp.369-375
    • /
    • 2010
  • The two-dimensional finite element formulation for the basic field equations governing electrochemical responses of ionic conducting polymer-metal composite(IPMC) actuators is proposed in the present study. Biaxial deformation of a platinum plated Nafion actuator having 4 electrodes is dominated by electro-osmosis of hydrated ions and self-diffusion of free water molecules. Some numerical studies for IPMC actuators with electric field are carried out in order to show the validity of the proposed formulation and electric field analysis for the initial condition of total charge distribution are conducted using commercial code ANSYS/Emag.