• Title/Summary/Keyword: Polygon model

Search Result 142, Processing Time 0.035 seconds

Stereovision by Active Surface Model

  • Yokomichi, M.;Sugiyama, H.;Kono, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1990-1993
    • /
    • 2005
  • Stereovision is known to be one of the most important tools for robot vision systems. Previously, 2D active contour model has been applied to stereovision by defining the contour on the 3D space instead of image plane. However, the proposed model is still that of curve so that some complex shapes such as surfaces with high curvature can not be properly estimated because of occlusion phenomena. In this paper, the authors extend the curve model to the surface model. The surface is approximated by polygons and new energy function and its optimization method for surface estimation is proposed. Its effectiveness is examined by experiments with real stereo images.

  • PDF

A Study on Effective Methods of Polygon Modeling through Modeling Process-Related System (모델링 공정 연계 시스템을 통한 효율적 폴리곤 모델링 기법에 대한 탐구)

  • Kim, Sang-Don;Lee, Hyun-Seok
    • Cartoon and Animation Studies
    • /
    • s.37
    • /
    • pp.143-158
    • /
    • 2014
  • In the modeling processes of 3D computer animation, methods to build optimal work conditions to realize real forms for more efficient works have been advanced. Digital sculpting software, published in 1999, ZBrush has been positioned as an essential factor in character model work requiring of realistic descriptions through different manufacturing methods from previous modeling work processes and easy shape realization. Their functional areas are expanding. So, in this production case paper, as a method to product more optimized animation character models, the efficiency of production method linking digital sculpting software (Z-Brush) and animation production software (Maya) was deliberated and its consequences and implications are suggested. To this end, first the technical features of polygon modeling and Retopology were reviewed. Second, based on it, the efficiency of animation character modeling work processes through step linking ZBrush and Maya suggested in this paper was analyzed. Third, based on the features drawn before, in order to prove the hypothesis on modeling optimization method suggested in this paper, the production process of character Dumvee from a short animation film, 'Cula & Mina' was analyzed as an example. Through this study, it was found that technical approach easiness and high level of completion could be realized through two software linked work processes. This study is considered to be a reference for optimizing production process of related industries or modeling-related classes by deliberating different modeling process linked systems.

Development of Machining Simulation System using Enhanced Z Map Model (Enhanced Z map을 이용한 절삭 공정 시뮬레이션 시스템의 개발)

  • 이상규;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.551-554
    • /
    • 2002
  • The paper discusses new approach for machining operation simulation using enhanced Z map algorithm. To extract the required geometric information from NC code, suggested algorithm uses supersampling method to enhance the efficiency of a simulation process. By executing redundant Boolean operations in a grid cell and averaging down calculated data, presented algorithm can accurately represent material removal volume though tool swept volume is negligibly small. Supersampling method is the most common form of antialiasing and usually used with polygon mesh rendering in computer graphics. The key advantage of enhanced Z map model is that the data structure is same with conventional Z map model, though it can acquire higher accuracy and reliability with same or lower computation time. By simulating machining operation efficiently, this system can be used to improve the reliability and efficiency of NC machining process as well as the quality of the final product.

  • PDF

Optimum Concrete Mix-proportion based on Database according to Assessment Model for Effective Region (유효 영역 판별 모델에 따른 데이터베이스 기반 콘크리트 최적 배합 선정)

  • Lee, Bang-Yeon;Kim, Jae-Hong;Kim, Jin-Keun;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.909-912
    • /
    • 2006
  • This paper examined the applicability of convex hull, which is defined as the minimal convex polygon including all points, to assessment model for effective region. In order to validate the applicability of the convex hull to assessment model for effective region, a genetic algorithm was adopted as a optimum technique, and an artificial neural network was adopted as a prediction model for material properties. The mix-proportion obtained from the proposed technique is more reasonable than that obtained from previous work.

  • PDF

Model-Based Three-dimensional Multiview Object Implementation by OpenGL (OpenGL을 이용한 모델 기반 3차원 다시점 객체 구현)

  • Oh, Won-Sik;Kim, Dong-Uk;Kim, Hwa-Sung;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.299-309
    • /
    • 2008
  • In this paper, we propose an algorithm for object generation from model-based 3-dimensional multi-viewpoint images using OpenGL rendering. In the first step, we preprocess a depth map image in order to get a three-dimensional coordinate which is sampled as a vertex information on OpenGL and has a z-value as depth information. Next, the Delaunay Triangulation algorithm is used to construct a polygon for texture-mapping using the vertex information. Finally, by mapping a texture image on the constructed polygon, we generate a viewpoint-adaptive object by calculating 3-dimensional coordinates on OpenGL.

Recognition and positioning of occuluded objects using polygon segments (다각형 세그먼트를 이용한 겹쳐진 물체의 인식 및 위치 추정)

  • 정종면;문영식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.5
    • /
    • pp.73-82
    • /
    • 1996
  • In this paper, an efficient algorithm for recognizing and positioning occuluded objects in a two-dimensional plane is presented. Model objects and unknown input image are approximated by polygonal boundaries, which are compactly represented by shape functions of the polygons. The input image is partitioned into measningful segments whose end points are at the locations of possible occlusion - i.e. at concave vertices. Each segment is matched against known model objects by calculating a matching measure, which is defined as the minimum euclidean distance between the shape functions. An O(mm(n+m) algorithm for computing the measure is presentd, where n and m are the number of veritces for a model and an unknown object, respectively. Match results from aprtial segments are combined based on mutual compatibility, then are verified using distance transformation and translation vector to produce the final recognition. The proposed algorithm is invariant under translation and rotation of objects, which has been shown by experimental results.

  • PDF

A Study on a Hit Probability Model for Polygonal Target (다각형 표적의 명중확률 산정모델의 연구)

  • 황흥석
    • Journal of the military operations research society of Korea
    • /
    • v.25 no.1
    • /
    • pp.160-168
    • /
    • 1999
  • This research focussed on developing a hit probability model for polygonal target to increase the survivability of weapon systems by its shape design. First, we defined the delivery errors and derived functions for these errors based on the assumption of bivariate normal distribution, and the derived functions for probability of shot hitting of various shapes of polygonal target. Also, we developed computer program for computation of the probability of hitting a general n-sided polygon and we have shown a sample run output. The model could be used to improve the survivability from design phase by designing optimal polygonal shape of weapon system.

  • PDF

Dismantling Simulation of Nuclear Reactor Using Partial Mesh Cutting Method for 3D Model (3D 형상 모델의 부분 절단 기법을 이용한 원자로 해체 시뮬레이션)

  • Lee, Wan-Bok;Hao, Wen-Yuan;Kyung, Byung-Pyo;Ryu, Seuc-Ho
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.303-310
    • /
    • 2015
  • Game technologies are now applied in various engineering areas such as the simulation of surgical operation or the implementation of a cyber model house. One of the essential and important technology in these applications is cutting of the 3D polygon model in real time. Real-time cutting technology is an essential technology needed to implement the simulation of a building demolition or a car assembly for training or educational purpose. Previous cutting method using the conventional BSP-Tree structure has some limitations in that they divide the whole world including the 3D model and its environment, only into two parts with respect to an infinite plane. In this paper, we show a technique cutting the 3D model in a finite extent in order to solve this problem. Specifically, we restricted the cut surface in a finite rectangular area and constructed the mesh for the divided surface. To show the usefulness of our partial cutting technique, an example of the dismantling process simulation of a nuclear reactor polygon model was illustrated.

Improving the Rendering Speed of 3D Model Animation on Smart Phones

  • Ng, Cong Jie;Hwang, Gi-Hyun;Kang, Dae-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.266-270
    • /
    • 2011
  • The advancement of technology enables smart phones or handheld devices to render complex 3D graphics. However, the processing power and memory of smart phones remain very limited to render high polygon and details 3D models especially on games which requires animation, physic engine, or augmented reality. In this paper, several techniques will be introduced to speed up the computation and reducing the number of vertices of the 3D meshes without losing much detail.

Development of the cutting simulation system with decomposition Algorithm. (분해 모델링 기법을 이용한 절삭 시뮬레이션 시스템 개발)

  • 김용현;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.422-425
    • /
    • 2004
  • This paper develops an octree-based algorithm for machining simulation. Most commercial machining simulators are based on the Z map model, which has several limitations in terms of achieving a high level of precision in five-axis machining simulation. Octree representation being a three-dimensional (3D) decomposition method, an octree-based algorithm is expected to be able to overcome such limitations. With the octree model, storage requirement is reduced. Moreover, recursive subdivision is processed in the boundaries, which reduces useless computations. The supersampling method is the most common form of antialiasing and is typically used with polygon mesh rendering in computer graphics. The supersampling technique is being used to advance the efficiency of the octree algorithm..

  • PDF