• 제목/요약/키워드: Polyethylene Oxide

검색결과 186건 처리시간 0.027초

Analysis of Broad-Range DNA Fragments with Yttrium Oxide or Ytterbium Oxide Nanoparticle/Polymer Sieving Matrix Using High-Performance Capillary Electrophoresis

  • Kwon, Hae-Myun;Kim, Yong-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.297-301
    • /
    • 2009
  • We have developed the yttrium oxide (YNP) or ytterbium oxide (YbNP) nanoparticle/polymer matrices for the size-dependent separation of DNA ranging from 100 bp to 9,000 bp. High separation efficiency (> $10^6$ plates/m) and the baseline resolution for various DNA standards (100 bp, 500 bp, and 1 kbp DNA ladder) were obtained in 10 min with these matrices. The effects of concentrations of both polyethylene oxide (PEO) and nanoparticles were investigated and the highest performance was obtained at 0.02% PEO with 0.02% YNP or YbNP. Similar sieving power for both YNP and YbNP matrices was observed probably due to the similar sizes of nanoparticles, resulting in the formation of comparable sieving networks for DNA separation. For the reduction of electrosmotic flow, either dynamic or permanent coating of the capillary inner wall was compared and it turned out that PEO was superior to polyvinylpyrrolidone (PVP) or polyacrylamide (PAA) for better separation efficiency.

Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible displays

  • Choi, Kwang-Hyuk;Cho, Sung-Woo;Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.605-608
    • /
    • 2008
  • The preparation and characteristics of flexible indium tin oxide electrodes grown on polyethylene terephthalate (PET) substrates using a specially designed roll-to-roll sputtering system for use in flexible optoelectronics In spite of low a PET substrate temperature, we can obtain the flexible electrode with a sheet resistance of 47.4 ohm/square and an average optical transmittance of 83.46 % in the green region of 500~550 nm wavelength. Both x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis results showed that all flexible ITO electrodes grown on the PET substrate were an amorphous structure with a very smooth and featureless surface, regardless of the Ar/$O_2$ flow ratio due to the low substrate temperature, which is maintained by a cooling drum. In addition, the flexible ITO electrode grown on the Ar ion beam treated PET substrates showed more stable mechanical properties than the flexible ITO electrode grown on the wet cleaned PET substrate, due to an increased adhesion between the flexible ITO and the PET substrates.

  • PDF

Monte Carlo simulation and study of REE/PET composites with wide γ-ray protection

  • Tongyan Cui;Ruixin Chen;Shumin Bi;Rui Wang;Zhongjian Ma;Qingxiu Jia
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2919-2926
    • /
    • 2023
  • In this paper, rare earth element (REE)/polyester composites were designed with lanthanum oxide, gadolinium oxide, and lutetium oxide as ray shielding agents, and polyethylene terephthalate (PET) as the base. Monte Carlo simulation was carried out using FLUKA software. We found that the radiation protection performance of the composite is affected by the type and amount of REE; a higher amount of REE equated to a better radiation protection performance of the composite. When the thickness of the composite and total thickness of the REE is constant, the number of superimposed layers inside the composite does not affect its shielding performance. Compared with a single-type REE/PET composite, a mixed-type REE/PET composite has a wider range of γ-ray absorption and better radiation protection performance. When the mass ratio of PET to REE is 2:8 and different types of REE are mixed with equal mass, several 0.2 cm-thick mixed-type REE/PET composites can shield >70% of 60 and 80 KeV γ-rays.

두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸 (Wear of UHMWPE Pins Against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.167-172
    • /
    • 2002
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, fur the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steef discs.

두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸 (Wear of UHMWPE Pins against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions)

  • 이권용;김석영;김신윤
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.67-71
    • /
    • 2000
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, for the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steel disks.

  • PDF

폴리에틸렌옥사이드를 이용한 세파트리진프로필렌글리콜 서방성매트릭스 정제의 제조 및 평가 (Pharmaceutical Formulation and Evaluation of Sustained - Release Hydrophilic Matrix Tablet of Cefatrizine Propyleneglycol Using Polyethylene Oxide)

  • 이언형;박선영;지웅길;김동출
    • Journal of Pharmaceutical Investigation
    • /
    • 제31권1호
    • /
    • pp.37-41
    • /
    • 2001
  • Various characteristics of polyethylene oxide (PEO) are useful for drug delivery systems. In this study, PEO was used as a sustained release matrix system containing cefatrizine propyleneglycol (Cefa-PG) which is a new semi-synthetic broad-spectrum and orally active cephalosporin. Five kinds of sustained release matrix tablets were formulated with various content of PEO and other ingredients. And three types of matrix tablets were formulated of which compositions were the same but the hardness was different. It was found that PEO content influenced drug release rate. Increasing PEO content, the drug release rate from matrix tablets was decreased. In addition, Avicel, one of the ingredients of matrix components, changed the drug release from the sustained release PEO matrix tablets. With increasing Avicel content, the rate of drug release was increased. For the effect of hardness of matrix tablets, the rate of drug release is decreased with increasing hardness. In comparison of bioavailability parameters after oral administration of Cefa-PG PEO matrix tablets and general Cefa-PG capsule in beagle dog, the sustained release PEO matrix tablets is more useful than a general dosage form. $AUC^{0-12}$ of the sustained release PEO matrix tablet and the general dosage form was 1.16 and 0.644 respectively.

  • PDF

산소플라즈마 전처리된 Polyethylene Naphthalate 기판 위에 증착된 ZnO:Ga 투명전도막의 특성 (Properties of ZnO:Ga Transparent Conducting Film Fabricated on O2 Plasma-Treated Polyethylene Naphthalate Substrate)

  • 김병국;김정연;오병진;임동건;박재환;우덕현;권순용
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.175-180
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used for optoelectronic applications. Among TCO materials, zinc oxide (ZnO) has been studied extensively for its high optical transmission and electrical conduction. In this study, the effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films (GZO) on polyethylene naphthalate (PEN) substrate were studied. The $O_2$ plasma pretreatment process was used instead of conventional oxide buffer layers. The $O_2$ plasma treatment process has several merits compared with the oxide buffer layer treatment, especially on a mass production scale. In this process, an additional sputtering system for oxide composition is not needed and the plasma treatment process is easily adopted as an in-line process. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PEN substrate and the GZO film, the $O_2$ plasma pre-treatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the contact angle decreased and the RMS surface roughness increased significantly. It is believed that the surface energy and adhesive force of the polymer surfaces increased with the $O_2$ plasma treatment and that the crystallinity and grain size of the GZO films increased. When the RF power was 100W and the treatment time was 120 sec in the $O_2$ plasma pretreatment process, the resistivity of the GZO films on the PEN substrate was $1.05\;{\times}\;10^{-3}{\Omega}-cm$, which is an appropriate range for most optoelectronic applications.

Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use

  • Jang, Hyun-Jun;Shin, Chan Young;Kim, Kyu-Bong
    • Toxicological Research
    • /
    • 제31권2호
    • /
    • pp.105-136
    • /
    • 2015
  • Polyethylene glycols (PEGs) are products of condensed ethylene oxide and water that can have various derivatives and functions. Since many PEG types are hydrophilic, they are favorably used as penetration enhancers, especially in topical dermatological preparations. PEGs, together with their typically nonionic derivatives, are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. The compounds studied in this review include PEG/PPG-17/6 copolymer, PEG-20 glyceryl triisostearate, PEG-40 hydrogenated castor oil, and PEG-60 hydrogenated castor oil. Overall, much of the data available in this review are on PEGylated oils (PEG-40 and PEG-60 hydrogenated castor oils), which were recommended as safe for use in cosmetics up to 100% concentration. Currently, PEG-20 glyceryl triisostearate and PEGylated oils are considered safe for cosmetic use according to the results of relevant studies. Additionally, PEG/PPG-17/6 copolymer should be further studied to ensure its safety as a cosmetic ingredient.

메쉬 침지여과분리형 회분식 생물반응조를 이용한 PEG제거의 기초 연구 (Fundamental Study on the Removal Properties of Polyethylene Glycols by Mesh Filtration Batch Bio-reactor)

  • 정용준
    • 한국물환경학회지
    • /
    • 제25권4호
    • /
    • pp.502-506
    • /
    • 2009
  • The removal properties of Polyethylene glycols (PEGs) known as the important group of synthetic polymers of ethylene oxide were examined by the bio-reactor equipped with a mesh filter module. PEG-1000 and PEG-2000 were fairly removed on the basis of TOC, which were 75.1% and 51.6%, respectively. In the case of PEG-20000, the removal efficiency of TOC was less than 15.2% and the favorable acclimation of microbes was not obtained. It was suggested that this system could effectively maintain microbes for the biodegradation of low molecular weight of PEG and TOC removal was significantly influenced by PEG molecular weight.

Plastic 기판 상의 투명성과 유연성을 지닌 Zinc Oxide 박막 트랜지스터 (Mechanically Flexible and Transparent Zinc Oxide Thin Film Transistor on Plastic Substrates)

  • 박경애;안종현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.10-10
    • /
    • 2009
  • We have fabricated transparent and flexible thin film transistor(TFT) on polyethylene terephthalate(PET) substrate using Zinc Oxide (ZnO) and Indium Tin Oxide (ITO) film as active layer and electrode. The transfer printing method was used for printing the device layer on target plastic substrate at room temperature. This approach have an advantage to separate the high temperature annealing process to improve the electrical properties of ZnO TFT from the device process on plastic substrate. The resulting devices on plastic substrate presented mechanical and electrical properties similar with those on rigid substrate.

  • PDF