• Title/Summary/Keyword: Polycrystalline Material

Search Result 359, Processing Time 0.048 seconds

Characteristics of Pd/polycrystalline 3C-SiC Schottky diodes for high temperature gas sensors (고온 가스센서용 Pd-다결정 3C-SiC 쇼트키 다이오드의 특성)

  • Ahn, Jeong-Hak;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.275-275
    • /
    • 2008
  • This paper describe the fabrication of a Pd/polycrystalline 3C-SiC schottky diode and its characteristics, in which the polycrystalline 3C-SiC layer and Pd Schottky contact were deposited by using APCVD and sputter, respectively. Crystalline quality, uniformity, and preferred orientations of the Pd thin film were evaluated by SEM and XRD, respectively. Pd/poly 3C-SiC Schottky diodes were fabricated and characterized by I-V and C-V measurements. Its electric current density Js and barrier height voltage were measured as $2\times10^{-3}$ A/$cm^2$ and 0.58 eV, respectively. These devices were operated until about $400^{\circ}C$. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature chemical sensor applications.

  • PDF

The uniform polycrystalline 3C-SiC thin film growth by the gas flow control (가스흐름 제어에 의한 균일한 다결정 3C-SiC 박막 성장)

  • Yoon, Kyu-Hyung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.92-92
    • /
    • 2008
  • The surface flatness of heteroepitaxially grown 3C-SiC thin films is a key factor affecting electronic and mechanical device applications. This paper describes the surface flatness of polycrystalline 3C-SiC thin films by the gas flow control according to the location change of geometric structure. The polycrystalline 3C-SiC thin film was deposited by APCVD(Atmospheric pressure chemical vapor deposition) at $1200^{\circ}C$ using HMDS(Hexamethyildisilane : $Si_2(CH_3)_6)$ as single precursor, and 5 slm Ar as the main flow gas. According to the location of geometric structure, surface fringes and flatness changed. It shows the distribution of thickness is formed uniformly in the specific location of the geometric structure.

  • PDF

Growing of polycrystalline 3C-SiC thin films for harsh environment MEMS applications. (극한 환경 MEMS용 다결정 3C-SiC 박막의 성장)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.408-409
    • /
    • 2006
  • The polycrystalline 3C-SiC thin films heteroepitaxially grown by LPCVD method using single precursor 1. 3-disilabutane at $850^{\circ}C$. The crystallinity of the 3C-SiC thin film. was analyzed by XPS. Residual strain was investigated by Raman scattering. The surface morphology and voids between SiC and $SiO_2$ were measured by SEM. The grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS applications.

  • PDF

Ohmic contact formation of polycrystalline 3C-SiC for high-temperature MEMS applications (초고온 MEMS용 다결정 3C-SiC의 Ohmic Contact 형성)

  • Ohn, Chang-Min;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.406-407
    • /
    • 2006
  • This paper describes the ohmic contact formation between a TiW film as a contact material deposied by RF magnetron sputter and polycrystalline 3C-SiC films deposied on thermally grown Si wafers. The specific contact resistance (${\rho}_c$) of the TiW contact was measured by using the C-TLM. The contact phase and interfacial reaction between TiW and 3C-SiC at high-temperature were also analyzed by XRD and SEM. All of the samples didn't show cracks of the TiW film and any interfacial reaction after annealing. Especially, when the sample was annealed at $800^{\circ}$ for 30min., the lowest contact resistivity of $2.90{\times}10^{-5}{\Omega}cm^2$ was obtained due to the improved interfacial adhesion.

  • PDF

Fabrication of Pd/poly 3C-SiC Schottky diode hydrogen sensors (다결정 3C-SiC 마이크로 공진기의 온도 특성)

  • Ryu, Kyong-Il;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.130-130
    • /
    • 2009
  • This paper describes the temperature characteristics of polycrystalline 3C-SiC micro resonators. The 1.2 ${\mu}m$ and 0.4 ${\mu}m$ thick polycrystalline 3C-SiC cantilever and doubly clamped beam resonators with 60 ~ 100 ${\mu}m$ lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at temperature range of $25{\sim}200^{\circ}C$. The TCF(Temperature Coefficient of Frequency) of 60, 80 and 100 ${\mu}m$ long cantilever resonators were -9.79, -7.72 and -8.0 $ppm/^{\circ}C$. On the other hand, TCF of 60, 80 and 100 ${\mu}m$ long doubly clamped beam resonators were -15.74, -12.55 and -8.35 $ppm/^{\circ}C$. Therefore, polycrystalline 3C-SiC resonators are suitable with RF MEMS devices and bio/chemical sensor applications in harsh environments.

  • PDF

Structural Control Aiming for High-performance SiC Polycrystalline Fiber

  • Ishikawa, Toshihiro;Oda, Hiroshi
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.615-621
    • /
    • 2016
  • SiC-polycrystalline fiber (Tyranno SA, Ube Industries, Ltd.) shows very high heat-resistance and excellent mechanical properties up to very high temperatures. However, further increase in the strength is required. Up to now, we have already clarified the relationship between the strength and the defect-size of the SiC-polycrystalline fiber. The defects are formed during the conversion process from the raw material (amorphous Si-Al-C-O fiber) into SiC-polycrystalline fiber. In this conversion process, a degradation of the Si-Al-C-O fiber and a subsequent sintering of the degraded fiber proceed as well, accompanied by a release of CO gas and compositional changes, to obtain the dense SiC-polycrystalline fiber. Since these changes proceed in each filament, the strict control should be needed to minimize residual defects on the surface and in the inside of each filament for achieving the higher strength. In this paper, the controlling factors of the fiber strength and the fine structure will appear.

A Study on Electric Characteristics of Silicon Implanted p Channel Polycrystalline Silicon Thin Film Transistors Fabricated on High Temperature (고온에서 제조된 실리콘 주입 p채널 다결정 실리콘 박막 트랜지스터의 전기 특성 변화 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.364-369
    • /
    • 2011
  • Analyzing electrical degradation of polycrystalline silicon transistor to applicable at several environment is very important issue. In this research, after fabricating p channel poly crystalline silicon TFT (thin film transistor) electrical characteristics were compare and analized that changed by gate bias with first measurement. As a result on and off current was reduced by variation of gate bias and especially re duce ratio of off current was reduced by $7.1{\times}10^1$. On/off current ratio, threshold voltage and electron mobility increased. Also, when channel length gets shorter on/off current ratio was increased more and thresh old voltage increased less. It was cause due to electron trap and de-trap to gate silicon oxide by variation of gate bias.

Characteristics of Polycrystalline Silicon TFT with Stress-Bias (스트레스에 따른 다결정 실리콘 TFT의 영향)

  • Baek, Do-Hyun;Lee, Yong-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.233-236
    • /
    • 2000
  • Polycrystalline Silicon Thin Film Transistors(Poly-Si TFT's), fabricated at temperature lower than $600^{\circ}C$ are now largely used in many applications, particularly in large area electrons. In this work, electrical stress effects on Poly-Si TFT's fabricated by Solid Phase Crystal(SPC) was investigated by measuring electric properities such as transfer and output characteristics, and channel conductance. Consequently, It is turned out that it should be noted the output characteristics, drain current and channel conductance, strongly degrade around origin.

  • PDF

Characteristics of corrugated polycrystalline 3C-SiC resonators (주름진 다결정 3C-SiC 공진기의 특성)

  • Nhan, Duong The;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.251-251
    • /
    • 2008
  • In this work, appropriate corrugated structure is suggested to increase resonant frequency of resonators. Micro beam resonators based on polycrystalline 3C-SiC films which have a two-side corrugation along the length of beams were simulated by finite element method and compared to a same - size flat rectangular. With the dimension of $36\times12\times0.5{\mu}m^3$, the flat cantilever has resonant frequency of 746 kHz. Meanwhile, with this size only corrugation width of $6{\mu}m$ and depth of $0.4{\mu}m$, the corrugated cantilever reaches the resonant frequency at 1.252 MHz, and is 68% larger than that of flat type.

  • PDF

The microstructure of polycrystalline silicon thin film that fabricated by DC magnetron sputtering

  • Chen, Hao;Park, Bok-Kee;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.332-333
    • /
    • 2008
  • DC magnetron sputtering was used to deposit p-type polycrystalline silicon on n-type Si(100) wafer. The influence of film microstructure properties on deposition parameters (DC power, substrate temperature, pressure) was investigated. The substrate temperature and pressure have the important influence on depositing the poly-Si thin films. Smooth ploy-Si films were obtained in (331) orientation and the average grain sizes are ranged in 25-30nm. The grain sizes of films deposited at low pressure of 10mTorr are a little larger than those deposited at high pressure of 15mTorr.

  • PDF