• Title/Summary/Keyword: Polyacrylonitrile (PAN)

Search Result 172, Processing Time 0.023 seconds

Surface Graft Copolymerization of Acrylamide onto Polyacrylonitrile (아크릴아미드의 PAN에 대한 표면 그라프트 공중합에 관한연구)

  • 최재혁;김한도
    • Textile Coloration and Finishing
    • /
    • v.5 no.2
    • /
    • pp.144-148
    • /
    • 1993
  • To increase the moisture content and thereby to reduce the static charge of polyacrylonitrile (PAN), thin layer surface photografting of acylamide (AAm) onto PAN fabrics by using benzophenone as a initiator with a mixtured solvent was carried. The effects of reaction conditions such as monomer, initiator concentrations, UV irradiation time and immersion time of fabrics on grafting were investigated. The percent grafting slightly increased with increasing monomer concentration, benzophenone concentration up to limiting value and thereafter decreased or level offed. The percent grafting was significantly increased with increasing irradiation and immersion times. The moisture regain increased with increasing the percent grafting. The static charge decreased with increasing the percent grafting.

  • PDF

A Review of Flame Retarding Polyacrylonitrile (PAN) Fibers and Composites (난연성 폴리아크릴로니트릴 고분자 섬유 및 복합소재 연구 동향)

  • Kim, Jongho;Ku, Bon-Cheol
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.342-348
    • /
    • 2019
  • Development of flame retarding polymer based materials has been studied actively due to the increase in use of polymers. The post treatment of manufactured fibers or the introduction of flame retardant into fibers is representative method for the way to improve the flame retardancy. Among the polymers, polyacrylonitrile (PAN), which is a precursor of carbon fiber, has been widely used for clothes. Due to low flame retardancy of PAN fiber (LOI value: 17~18%), the improvement of flame retardancy of PAN fiber is needed. In this review paper, we report preparation methods for the fabrication of post-treated (oxidization or chemical reaction) flame-retarding PAN fibers and composites composed of PAN and organic/inorganic materials (SiO2, 2D materials or CNT).

Grafting of Casein onto Polyacrylonitrile Fiber for Surface Modification

  • Jia Zhao;Du Shanyi
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.235-240
    • /
    • 2006
  • Polyacrylonitrile (PAN) fiber was grafted with casein after alkaline hydrolysis and chlorination reactions of the original fiber. The structures and morphologies of the casein grafted fiber were characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscope (SEM). Moisture absorption, specific electric resistance, water retention value, and mechanical properties were also investigated. The results showed that casein was grafted onto the surface of the PAN fiber and the grafted PAN fiber presented better hygroscopicity compared with the untreated fiber. With proper tensile strength, the modified fiber could still meet the requirement for wearing. A mechanism was proposed to explain the deposit of casein on the synthetic acrylic fiber.

Study on Electro spinning Voltage and Strength Characteristics Using Agitation Solution (SWCNT 0.1% -PAN 3% -DMF 17%) (SWCNT 0.1%-PAN 3%-DMF 17% 교반용액을 활용한 전기방사 전압 및 강도특성연구)

  • Lee, Jongyeob;Bae, Sangdae;Kim, Kwonhoo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.6
    • /
    • pp.290-295
    • /
    • 2020
  • In this study, Electro spinning was carried out using Cabon nanotube 0.1%-Polyacrylonitrile 3%-Dimethylformamide 17% agitation solution. It was investigated the solute and solvent correlations according to the electro spinning voltages ranging form 5 to 40 kV, based on the SEM image. Except voltage 25 kV, electro spinning was failed due to the lack of electro spinning (less than 60%). Voltage 25 kV was showed excellent properties, and was confirmed Cabon nanotube 58.1 nm and diameter of Cabon nanotube + Polyacrylonitrile 1.76 ㎛ as shown SEM image. Also, the tensile test results were showed that SK Chemical prepreg electro spinning angle of 0 and 90 degrees were 137 MPa and 60 MPa, respectively.

Preparation of Carbon Films from Polyacrylonitrile@Lignin Composites, and Their Electrical Properties and Adsorption Behavior (폴리아크릴로나이트릴/리그닌 복합소재로부터 생성된 탄소 필름의 전기적 성질 및 흡착 성능)

  • Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.106-110
    • /
    • 2023
  • Lignin is compatible with various polymeric materials and useful as a carbon precursor. In this work, carbon monolith films were produced from polyacrylonitrile (PAN)@lignin precursor films by a controlled carbonization cycle. In addition, their morphological features, electrical properties, and adsorption behavior were analyzed and compared with those of carbonized PAN films. The successful formation of PAN@lignin precursor was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. SEM was used to examine the morphology of precursor and carbonized films, revealing that both precursor and carbonized films retained structural stability following carbonization. A trace of lignin in the carbonized films was also found. The pore structure of the carbonized PAN@lignin film was measured using the BET method, indicating the formation of fairly uniform pores. The electrical properties were also analyzed to obtain the Ohmic relation, which demonstrated that the electrical signal was influenced by incoming materials. Finally, the carbonized PAN@lignin films were useful as adsorbents to remove metal ions. This study provides important information for future initiatives in relevant research fields.

Influence of oxidative atmosphere of the electron beam irradiation on cyclization of PAN-based fibers

  • Shin, Hye Kyoung;Park, Mira;Kim, Hak-Yong;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.219-221
    • /
    • 2015
  • In order to study the impact of atmosphere during electron beam irradiation (EBI) of polyacrylonitrile (PAN) precursor fibers, the latter were stabilized by EBI in both air and oxygen atmospheres. Gel-fraction determination indicated that EBI-stabilization under an oxygen atmosphere leads to an enhanced cyclization in the PAN fibers. In the Fourier-transform infrared spectroscopy analysis, the PAN fibers stabilized by EBI under an oxygen atmosphere exhibited a greater decrease in the peak intensity at 2244 cm−1 (C≡N vibration) and a greater increase in the peak intensity at 1628 cm−1 (C=N absorption) than the corresponding PAN fibers stabilized under an air atmosphere. From the X-ray diffraction analysis it was found that oxygen uptake in PAN fibers leads to an increase in the amorphous region, produced by cyclization.

Modification of Polyacrylonitrile Films by Hydroxylamine and Hydrazine Treatment (히드록실아민과 히드라진 처리에 의한 폴리아크릴로니트릴 필름의 개질)

  • Park, Hee Jung;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.394-402
    • /
    • 2015
  • Modification of polyacrylonitrile (PAN) films by using hydroxylamine (HA) and hydrazine to produce hydroxyl and amine groups, respectively, and to introduce cross-linking of PAN polymers was studied. Modified PAN films obtained by HA and/or hydrazine treatment including a successive or a simultaneous process were analyzed by the degree of conversion, water and N,N'-dimethylformamide (DMF) swelling ratio, FTIR spectra, atom content, and thermal analysis data. PAN films reacted with HA showed increased hydrophilicity and low dimensional stability in water. Hydrazine treatment gave PAN films high dimensional stability of low DMF swelling. Although the DMF swelling ratio of the modified PAN films was dramatically decreased by the successive treatment of hydrazine and HA, the introduction of the hydrophilic functional groups was limited due to the cross-linking. Simultaneous treatment of HA and hydrazine was the most effective method to increase hydrophilicity of PAN films with a high dimensional stability.

Integration of Graphene Oxide Into PAN Nanofibers with Improved Physical Property (Graphene Oxide를 활용한 PAN 나노섬유 제조 및 물리적 특성 향상)

  • Lee, Jeonghun;Yun, Jaehan;Byun, Hongsik
    • Membrane Journal
    • /
    • v.27 no.3
    • /
    • pp.255-262
    • /
    • 2017
  • In this study, systematic integration of graphene oxide (GO) into polyacrylonitrile (PAN) nanofibers was accomplished by electrospinning to examine their mechanical properties. Exfoliated GO was initially prepared by the modified Hummer's method, and the surface of the GO was modified with an organic surfactant (e.g., cetyltrimetylammonium chloride) to improve its stability and dispersity. The overall mechanical property of the nanofiber composite membranes was highly improved. Particularly, the composite membranes with the modified GO exhibited much improved mechanical property, presumably due to the increased stability and dispersity of GO during electrospinning.

Effect of Carboxylic Acid Group of Functionalized Carbon Nanotubes on Properties of Electrospun Polyacrylonitrile (PAN) Fibers (기능화된 탄소나노튜브의 카르복실산이 전기방사된 폴리아크릴로니트릴 섬유의 물성에 미치는 영향)

  • Park, Ok-Kyung;Kim, Ju-Hyung;Lee, Sung-Ho;Lee, Joong-Hee;Chung, Yong-Sik;Kim, Jun-Kyung;Ku, Bon-Cheol
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.472-477
    • /
    • 2011
  • To study the effects of the acid group of functionalized MWNT (multiwalled carbon nanotube) on the thermal and mechanical properties of polyacrylonitrile(PAN) nanofibers, acid ($H_2SO_4/HNO_3$) treated MWNT (O-MWNT) were further functionalized by diazonium salt reaction with 5-aminoisophthalic acid (IPA). Compared to O-MWNT, IPA-MWNT with isophthalic acid group showed a better dispersion stability in polar solvents and IPA-MWNT/PAN composite film displayed lower heat of reaction (${\Delta}H$) than that of homo PAN when stabilized under air atmosphere. The continuous electrospun fibers were prepared using a conductive water bath. PAN fibers containing 1 wt% of IPA-MWNT showed an increase of tensile strength by 100% and tensile modulus by 240% compared to the PAN fibers without IPA-MWNT.

Electrospun Nanofibrous Polyacrylonitrile(PAN)/ Fe2O3 Membrane as Co2Gas Sensor

  • Kim, Ye-Na;Park, Eun-Young;Lee, Deuk-Yong;Lee, Myung-Hyun;Lee, Se-Jong;Kim, Bae-Yeon;Cho, Nam-Ihn
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.194-197
    • /
    • 2007
  • Polyacrylonitrile (PAN)/$Fe_2O_3$ nanocomposite membranes with a thickness of 0.02 mm were electrospun by adding 0 to 5 wt% of $Fe_2O_3$ into PAN. The surface tension, density, kinematic viscosity and dynamic viscosity of the PAN solution were determined to be $33.8{\pm}1mN/m$, 0.9794 g/ml, $1548.6mm^2/sec$ and 1516.7 cP, respectively. The average diameters of PAN fibers containing 0, 1 2, 3, and 4 wt% $Fe_2O_3$ particles were 300, 260, 210, 130, and 90 nm, respectively. Fourier-transform infrared spectroscopy results showed that the addition of $Fe_2O_3$ nanoparticles to the PAN mat reduced the absorption peak intensity at $2242cm^{-1}$ ($C{\equiv}N$ bond) while it caused a sharp increase in the peak intensity at $2356cm^{-1}$(C=O bond). Thus, it appears that an appropriate amount of $Fe_2O_3$ nanoparticles in the PAN backbone leads to an improvement of the performance of the $CO_2$ gas sensor, most likely due to the change of functional groups in the membrane.