DOI QR코드

DOI QR Code

Modification of Polyacrylonitrile Films by Hydroxylamine and Hydrazine Treatment

히드록실아민과 히드라진 처리에 의한 폴리아크릴로니트릴 필름의 개질

  • Park, Hee Jung (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 박희정 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2014.07.23
  • Accepted : 2014.10.23
  • Published : 2015.05.25

Abstract

Modification of polyacrylonitrile (PAN) films by using hydroxylamine (HA) and hydrazine to produce hydroxyl and amine groups, respectively, and to introduce cross-linking of PAN polymers was studied. Modified PAN films obtained by HA and/or hydrazine treatment including a successive or a simultaneous process were analyzed by the degree of conversion, water and N,N'-dimethylformamide (DMF) swelling ratio, FTIR spectra, atom content, and thermal analysis data. PAN films reacted with HA showed increased hydrophilicity and low dimensional stability in water. Hydrazine treatment gave PAN films high dimensional stability of low DMF swelling. Although the DMF swelling ratio of the modified PAN films was dramatically decreased by the successive treatment of hydrazine and HA, the introduction of the hydrophilic functional groups was limited due to the cross-linking. Simultaneous treatment of HA and hydrazine was the most effective method to increase hydrophilicity of PAN films with a high dimensional stability.

폴리아크릴로니트릴(PAN) 필름에 히드록실아민(HA)을 반응시켜 히드록시기와 아민기를 생성시키고, 히드라진으로 처리하여 가교결합을 도입시키는 방법을 검토하였다. HA와 히드라진을 각각 처리하거나 2단계 또는 동시 처리하여 개질시킨 PAN 시료들의 반응도, 물 및 N,N'-디메틸포름아미드(DMF) 팽윤도, FTIR 스펙트럼, 원소함량, 열분석 결과들을 분석하여 효율적으로 기능기와 가교결합을 도입시키는 방법을 제시하였다. PAN 필름은 HA와의 반응에 의해 기능기가 도입되고 친수성이 향상되지만 형태안정성이 감소하며, 히드라진 처리에 의해 DMF 팽윤도가 감소한다. 히드라진 및 HA를 2단계로 처리하면 형태안정성은 향상되지만 기능기 도입이 어려워지고, 히드라진과 HA를 동시에 처리하면 형태안정성과 친수성을 효율적으로 향상시킬 수 있다.

Keywords

Acknowledgement

Supported by : 산업통상자원부

References

  1. A. M. Summan, J. Polym. Sci. Part A: Polym. Chem., 37, 3057 (1999). https://doi.org/10.1002/(SICI)1099-0518(19990815)37:16<3057::AID-POLA2>3.0.CO;2-J
  2. C. Xu, J. Du, L. Ma, G. Li, M. Tao, and W. Zhang, Tetrahedron, 69, 4749 (2013). https://doi.org/10.1016/j.tet.2013.02.084
  3. K. Singh, C. Shah, C. Dwivedi, M. Kumar, and P. N. Bajaj, J. Appl. Polym. Sci., 127, 410 (2013). https://doi.org/10.1002/app.37684
  4. N. Han, X. X. Zhang, X. C. Wang, and N. Wang, Macromol. Res., 18, 144 (2010). https://doi.org/10.1007/s13233-009-0122-z
  5. F. Lian, J. Liu, Y. Xue, Z. Ma, and J. Liang, Fib. Polym., 14, 243 (2013). https://doi.org/10.1007/s12221-013-0243-z
  6. I. Karacan and G. Erdogan, Fib. Polym., 13, 295 (2012). https://doi.org/10.1007/s12221-012-0295-5
  7. S. Karaivanova and A. Badev, Angew. Makromol. Chem., 140, 1 (1986). https://doi.org/10.1002/apmc.1986.051400101
  8. T. J. Xue, M. A. McKinney, and C. A. Wilkie, Polym. Degrad. Stab., 58, 193 (1997). https://doi.org/10.1016/S0141-3910(97)00048-7
  9. P. Bajaj, A. K. Agrawall, A. Dhand, and N. Kasturia & Hansraj, J. Macromol. Sci., Part C: Polym. Rev., 40, 309 (2000). https://doi.org/10.1081/MC-100102400
  10. J. Y. Kwon, B. G. Kim, and J. Y. Do, Macromol. Res., 15, 533 (2007). https://doi.org/10.1007/BF03218827
  11. I. Bunia, V. Neagu, and C. Luca, React. Funct. Polym., 66, 871 (2006). https://doi.org/10.1016/j.reactfunctpolym.2005.12.001
  12. G. R. Kiani, H. Sheikhloie, and N. Arsalani, Desalination, 269, 266 (2011). https://doi.org/10.1016/j.desal.2010.11.012
  13. S. Zhao, G. Han, and M. Li, Mater. Chem. Phys., 120, 431 (2010). https://doi.org/10.1016/j.matchemphys.2009.11.025
  14. Y. H. Chen, C. Y. Huang, M. L. Roan, F. D. Lai, K. N. Chen, and J. T. Yeh, J. Appl. Polym. Sci., 115, 570 (2010). https://doi.org/10.1002/app.31009
  15. D. C. Sherrington, Pure Appl. Chem., 60, 401 (1988).
  16. S. Yan, M. Zhao, G. Lei, and Y. Wei, J. Appl. Polym. Sci., 125, 382 (2012). https://doi.org/10.1002/app.35641
  17. D. H. Yang, H. S. Park, and Y. H. Kim, Text. Sci. Eng., 49, 9 (2012). https://doi.org/10.12772/TSE.2012.49.1.009
  18. K. Saeed, S. Y. Park, and T. J. Oh, J. Appl. Polym. Sci., 121, 869 (2011). https://doi.org/10.1002/app.33614
  19. P. Bajaj, A. K. Agrawal, A. Dhand, and N. Kasturia & Hansraj, J. Macromol. Sci., Part C: Polym. Rev., 40, 309 (2000). https://doi.org/10.1081/MC-100102400
  20. G. Socrates, Infrared and Raman Characteristic Group Frequencies, Chap 10-18, John Wiley & Sons, New York, 2004.
  21. V. Popescu and E. I Muresan, Ind. Eng. Chem. Res., 52, 13252 (2013). https://doi.org/10.1021/ie401494a
  22. B. Sha, J. Wang, L. Zhou, X. Zhang, L. Han, and L. Zhao, J. Appl. Polym. Sci., 128, 4124 (2013). https://doi.org/10.1002/app.38643
  23. Z. Wu, Y. Zhang, B. Wang, G. Qian, and T. Tao, Mater. Sci. Eng. B, 178, 923 (2013). https://doi.org/10.1016/j.mseb.2013.05.004
  24. P. Kampalanonwat and P. Supaphol, Appl. Mater. Interfaces, 2, 3619 (2010). https://doi.org/10.1021/am1008024
  25. D. Y. Lee, S. H. Cho, Y. S. Kim, and Y. S. Lee, Polym. Korea, 37, 592 (2013). https://doi.org/10.7317/pk.2013.37.5.592
  26. T. Godjevargova, A. Simeonova, and A. Dimov, J. Appl. Polym. Sci., 79, 283 (2001). https://doi.org/10.1002/1097-4628(20010110)79:2<283::AID-APP90>3.0.CO;2-2
  27. E. C. Riqueza, A. P. de Aquiar, M. R. M. P. Aguiar, and L. C. S. Maria, Polym. Bull., 55, 31 (2005). https://doi.org/10.1007/s00289-005-0412-3
  28. Z. Han, Y. Dong, and S. Dong, Mater. Design, 31, 2784 (2010). https://doi.org/10.1016/j.matdes.2010.01.015
  29. I. Karacan and G. Erdogan, Polym. Eng. Sci., 52, 937 (2012). https://doi.org/10.1002/pen.22160
  30. G. I. Nosova, A. V. Yakimanskii, N. A. Solovskaya, E. V. Zhukova, R. Y. Smyslov, A. R. Tameev, E. L. Aleksandrova, and T. V. Magdesieva, Polym. Sci. Ser. B, 53, 16 (2011). https://doi.org/10.1134/S1560090411010039