• 제목/요약/키워드: Poly(vinylpyrrolidone)

검색결과 36건 처리시간 0.023초

친수성 고분자가 BCNU 함유 PLGA 웨이퍼로부터 BCNU의 방출에 미치는 효과 (Effect of Hydrophilic Polymers on the Release of BCNU from BCNU-loaded PLGA Wafer)

  • 안태군;강희정;문대식;이진수;성하수
    • 폴리머
    • /
    • 제26권5호
    • /
    • pp.670-679
    • /
    • 2002
  • 1, 3-bis[2-chloroethyl]-1-nitrosourea (BCNU, carmustine)는 악성 뇌종양 치료를 위하여 화학요법적 임상에서 널리 사용되는 약물이다. 또한, poly(D,L-lactide-co-glycolide) (PLGA, 분자량: 20000 g/mole, 락타이드와 글리콜라이드 몰비 75 : 25)는 약물전달시스템을 위한 약물 전달체로써 사용되어지는 잘 알려진 생분해성 초분자이다. 본 연구에서 폴리비닐피롤리돈 (PVP) 또는 폴리에틸렌옥사이드 (PEO)를 함유하고 있는 BCNU 함유 PLGA 웨이퍼들의 BCNU 방출거동과 웨이퍼에 포접된 친수성 고분자의 효과를 조사하였다. 친수성 고분자의 첨가 또는 첨가 없이 BCNU 함유 PLGA 미분말은 분사건조법에 의해 제조하였으며, 제조된 BCNU 함유 PLGA 미분말은 압축성 형법에 의해 웨이퍼형태고 제조하였다. 친수성 고분자가 첨가된 BCNU 함유 PLGA 미분말의 포접율은 85∼97%였고, PLGA에 포접된 BCNU의 결정성은 현저히 감소하였다. 약물 방출 경향과 분해 거동에서 친수성 고분자의 함량이 증가할수록 BCNU의 초기방출량과 방출속도는 증가됨을 확인하였다. 방출시험 기간동안 웨이퍼의 형태변화와 무게변화를 측정함으로써 친수성 고분자의 함량이 증가할수록 PLGA의 수차와 분해가 촉진됨을 관찰하였다.

전자 빔을 이용한 폴리프로필렌 섬유의 PVP 하이드로젤 코팅 (PVP Hydrogel Coatings on Polypropylene Fibers using E-beam Irradiation)

  • 이지은;곽효빈;이용표;김경민;임정혁
    • 접착 및 계면
    • /
    • 제20권2호
    • /
    • pp.66-70
    • /
    • 2019
  • 소수성 폴리프로필렌 섬유의 표면을 상압 플라즈마 공정을 이용하여 표면처리하였다. 친수성으로 개질된 섬유를 수용성 폴리비닐프롤리돈 (poly(N-vinylpyrrolidone, PVP) 코팅액에 딥코팅하여 PVP 막을 형성하였다. 섬유 표면에 코팅된 PVP 막은 15 kGy 선량의 전자 빔 조사를 통해 가교되어, 폴리프로필렌 섬유의 표면이 PVP 하이드로젤로 균일하게 코팅된 것을 확인하였다. PVP 하이드로젤 코팅막의 두께는 코팅액의 농도를 조절하여 제어할 수 있었다. 단계적인 표면처리, PVP 코팅, 그리고 하이드로젤 막의 형성에 따른 특성은 접촉각, 전자현미경, 광학현미경 등을 통해 분석되었다.

방사선 가교에 의한 미생물 발효 셀룰로오스 하이드로겔의 제조 및 특성 (Preparation and Characterization of Microorganism Fermentation Celluose as Hydrogel by Radiation Crosslinking)

  • 임윤묵;박종석;권희정;노영창;김성호;최영훈;이선이;정무상
    • 방사선산업학회지
    • /
    • 제5권2호
    • /
    • pp.113-118
    • /
    • 2011
  • Hydrogels from a mixture of poly(N-vinylpyrrolidone) (PVP), ${\kappa}$-carrageenan and microorganism fermentation celluose were prepared by $^{60}Co$ gamma-ray irradiation. PVP and ${\kappa}$-carrageenan were mixed with the different ratios. Microorganism fermentation celluose were added to the mixture of PVP and ${\kappa}$-carrageenan to evaluate the effect of microorganism fermentation celluose on the gel strength. The gel strength of the hydrogel was evaluated for application of a wound dressing. The results showed that gelation and gel strength were increased with increasing the content of the microorganism fermentation celluose.

가용화 조성물과 난용성 약물군을 함유하는 고체분산체의 용출양상 (Dissolution Profiles of Solid Dispersions Containing Poorly Water-Soluble Drugs and Solubilizing Compositions)

  • 김태완;최춘영;;권경애;이범진
    • Journal of Pharmaceutical Investigation
    • /
    • 제32권3호
    • /
    • pp.191-197
    • /
    • 2002
  • Polymer based physical mixtures or solid dispersions containing solubilizing compositions[OA, tween80 and SLS] were prepared using a spray-dryer. Lovastatin(LOS), simvastatin(SIMS), aceclofenac(AFC) and cisapride(CSP) were selected as poorly water-soluble drugs. Dextrin, poly(vinylalcohol) (PVA), poly(vinylpyrrolidone)(PVP) and polyethylene glycol(PEG) were chosen as solubilizing carriers for solid dispersions. The solid dispersions containing solubilizing compositions without drug were prepared without using organic solvents or tedious changes of formulation compositions. This system could be used to quickly screen the dissolution profiles of poorly water-soluble drugs by simply mixing with drugs thereafter. In case of solid dispersion containing drug, organic solvent systems could be used to solubilize model drugs. The dissolution rates of the drugs were higher when mixed with drug and solid dispersions containing solubilizing compositions. However, solid dispersions of LOS, AFC, and CSP simultaneously containing drug and solubilizing compositions in organic solvent systems were more useful than physical mixtures of drug and solid dispersions without drug except SIMS. Based on solubilizing capability of polymer based physical mixtures in gelatin hard capsules, optimal solid dispersion system of poorly water-soluble drugs could be formulated. However, it should be noted that dissolution rate of poorly water-soluble drugs were highly dependent on drug properties, solubilizing compositions and polymeric carriers.

Effect of aggregation on shear and elongational flow properties of acrylic thickeners

  • Willenbacher, N.;Matter, Y.;Gubaydullin, I.;Schaedler, V.
    • Korea-Australia Rheology Journal
    • /
    • 제20권3호
    • /
    • pp.109-116
    • /
    • 2008
  • The effect of intermolecular aggregation induced by hydrophobic and electrostatic interactions on shear and elongational flow properties of aqueous acrylic thickener solutions is discussed. Complex shear modulus is determined at frequencies up to $10^4$ rad/s employing oscillatory squeeze flow. Extensional flow behavior is characterized using Capillary Break-up Extensional Rheometry. Aqueous solutions of poly(acrylic acid)(PAA)/poly(vinylpyrrolidone-co-vinylimidazole) (PVP-VI) mixtures exhibit unusual rheological properties described here for the first time. Zero-shear viscosity of the mixtures increases with decreasing pH and can exceed that of the pure polymers in solution by more than two orders of magnitude. This is attributed to the formation of complexes induced by electrostatic interactions in the pH range, where both polymers are oppositely charged. PAA/PVP-VI mixtures are compared to the commercial thickener Sterocoll FD (BASF SE), which is a statistical co-polymer including (meth) acrylic acid and ethylacrylate (EA) forming aggregates in solution due to "sticky" contacts among hydrophobic EA-sequences. PAA/PVP-VI complexes are less compact and more deformable than the hydrophobic Sterocoll FD aggregates. Solutions of PAA/PVP-VI exhibit a higher zero-shear viscosity even at lower molecular weight of the aggregates, but are strongly shear-thinning in contrast to the weakly shear-thinning solutions of Sterocoll FD. The higher ratio of characteristic relaxation times in shear and elongation determined for PAA/PVP-VI compared to Sterocoll FD solutions reflects, that the charge-induced complexes provide a much stronger resistance to extensional flow than the aggregates formed by hydrophobic interactions. This is most likely due to a break-up of the latter in extensional flow, while there is no evidence for a break-up of complexes for PAA/PVP-VI mixtures. These flexible aggregates are more suitable for the stabilization of thin filaments in extensional flows.

The Effect of Solvents on Sold Dispersion of Ipriflavone with Polyvinylpyrrolidone In Vivo

  • Jeong, Je-Kyo;Ahn, Yong-San;Moon, Byung-Kwan;Choi, Myung-Kyu;Khang, Gil-Son;Rhee, John-M.;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • 제35권1호
    • /
    • pp.1-5
    • /
    • 2005
  • ABSTRACT -Ipriflavone is a synthetic flavonoid derivate that improves osteoblast cell activity inhibiting bone resorption. In order to improve the bioavailability, solid dispersions of ipriflavone with PVP (poly-N-vinylpyrrolidone, MW=40,000 g/mole) were prepared by a spray-drying method. During the manufacturing of solid dispersion, various solvents [ethanol (EtOH), acetonitrile, methylene chloride and cosolvent-EtOH:acetone=1:1] were used to dissolve the ipriflavone and PVP. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) were used to evaluate the physicochemical interaction between ipriflavone and PVP. Particle size, crystallinity and the area of the endotherm $({\Delta}H)$ of solid dispersed ipriflavone using the acetonitrile as solvent were much smaller than those of the other preparation types. Bioavailability of ipriflavone in vivo was changed by solvents. When considering the result of in vivo test, solid dispersion of ipriflavone using the acetonitrile as solvent showed the best choice.

제제헝태에 따른 이프리플라본의 생체이용률 비교 (Comparative Bioavailability of Ipriflavone by Pharmaceutical Preparation Types)

  • 정제교;강길선;이종문;신호철;이해방
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권1호
    • /
    • pp.21-26
    • /
    • 2000
  • Bioavailability of ipriflavone (3-phenyl-7-isopropoxy-4H-I-benzopyran-4-one, IP), an antiosteoporotic drug with poor water-solubility, was studied for various types of pharmaceutical preparation in SD rats. The IP preparation types included (1) intact IP, (2) freezer milled IP (FIP), (3) freezer milled IP physically mixed with freezer milled poly-N-vinylpyrrolidone (PVP) (FIP+FPVP) and (4) spray-dried IP with PVP (SIP). Upon oral administration, SIP showed significantly higher absorption and elimination half-lives and the lag time $(t_{lag})$ than those of FIP+FPVP (approximately 2-fold). These results may be due to a sustained releasing effect of IP in the gastrointestinal tract by spray-drying with PVP. The $C_{max}$ of SIP was about 2 and 10 times higher than those of FIP+FPVP and FIP, respectively. The AUC of SIP was about 6 times higher than that of FIP+FPVP and 60 times that of FIP. Scanning electron microscopy (SEM) showed that SIP consisted of the finest particle size and minimal aggregation than other IP preparations. It is concluded that the IP formula prepared by the spray-drying method with PVP is the most effective approach to the improvement of bioavailability of IP.

  • PDF

토끼의 정상 및 핵이식배의 유리화 및 완만동결에 따른 융해 후 발달율 (Post-thaw Embryo Development following Vitrification or Slow Freezing of Rabbit Normal and Nuclear Transplant Embryos)

  • 강다원;최창용;하란조;강태영;심보웅;최상용;이효종;박충생
    • 한국수정란이식학회지
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 1998
  • In order to improve the cryopreservation by vitrification or slow freezing of nuclear transplant rabbit embryos, the effects of factors affecting embryo cryopreservation such as cryoprotectants, equilibration, cooling rate and post-thaw dilution on post-thaw survial and development were determined using intact embryos of morular stage. And the post-thaw development of nuclear transplanted embryos cryopreserved under the optimal conditions examined was compared between vitrification and slow freezing. The cryoprotectant solution used was ethyleneglycol-ficoll-sucrose (EFS) or ethyleneglycol-poly-vinylpyrrolidone-galactose- I (EPG- I ) for vitrification, and EPG- II for slow freezing. To examine the viability of frozen-thawed embryos, the nuclear transplanted embryos were co-cultured in TCM-199 plus 10% FBS with bovine oviduct epithelial cells(BOEC) for 24 hrs and the intact morulae were co-cultured with BOEC for 5 days and 3 days to hatching blastocyst stage in 39 ˚C 5% $CO_2$ incubator. The results obtained were as follows: Following vitrification with EFS, the post-thaw development of rabbit morulae to hatching blastocyst was significantly(P<0.05) higher in compacted stage(82.4%) than in early morular stage(60.0%). The post-thaw development of compacted morulae to hatching blastocyst was similarly high in vitrification with EFS(82.4%), EPG- I (85.0%) and in slow freezing with EPG- II (83.3%). Following vitrification with EPG- I, the post-thaw development of intact rabbit morulae to hatching blastocyst was similar as 78.0% and 85.0% in 1-step and 2-step post-thaw dilution, respectively. The post-thaw development of nuclear transplanted rabbit embryos of compacted morulae stage to hatching blastocyst was similarly 43.6% and 40.0% in vitrification with EPG- Iand slow freezing with EPG- II, respectively. These results indicated that the rabbit nuclear transplant and intact embryos of morulae stage could be well cryopreserved with either vitrification or slow freezing procedure.

  • PDF

Molecular Effect of PVP on The Release Property of Carvedilol Solid Dispersion

  • Oh, Myeong-Jun;Shim, Jung-Bo;Lee, Eun-Yong;Yoo, Han-Na;Cho, Won-Hyung;Lim, Dong-Kyun;Lee, Dong-Won;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권3호
    • /
    • pp.179-184
    • /
    • 2011
  • This study aimed to confirm the effect of molecular weight (MW) in solid dispersion of carvedilol with poly-vinylpyrrolidone (PVP) of various MW. Solid dispersion of carvedilol with PVP was prepared by spray-drying method. Scanning electron microscopy (SEM) was used to analyze the surface of solid dispersion samples. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) were used to analyze the crystalline of solid dispersion. Fourier transform infrared spectroscopy (FT-IR) was used to analyze the change of chemical structure characteristic of solid dispersion. DSC and XRD show that drug crystalline was changed. FT-IR revealed that chemical structure of solid dispersion comparing the chemical structure of drug was changed. The dissolution studies of solid dispersion presented at simulated gastric juice (pH 1.2). The dissolution rate of solid dispersion was dramatically enhanced than pure drug and the MW of PVP has an effect on the release property of carvedilol in solid dispersion. In conclusion, the present study has confirmed the effect of MW of PVP on release property of solid dispersion formulation of carvedilol with PVP.

One-pot Syntheses of Metallic Hollow Nanoparticles of Tin and Lead

  • Lee, Gae-Hang;Choi, Sang-Il;Lee, Young-Hwan;Park, Joo-T.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권5호
    • /
    • pp.1135-1138
    • /
    • 2009
  • Hollow Sn and Pb nanoparticles have been prepared by a rapid injection of an aqueous solution of $SnCl_2$- poly(vinylpyrrolidone) (PVP, surfactant) and $Pb(OAc)_2${\cdot}$3H_2O-PVP$ into an aqueous solution of sodium borohydride (reducing agent) in simple, one-pot reaction at room temperature under an argon atmosphere, respectively. The two hollow nanoparticles have been fully characterized by TEM, HRTEM, SAED, XRD, and EDX analyses. Upon exposure to air, the black Pb hollow nanoparticles are gradually transformed into a mixture of Pb, litharge (tetragonal PbO), massicot (orthorhombic PbO), and $Pb_5O_8$. The order and speed of mixing of the reactants between the metal precursor-PVP and the reductant solutions and stoichiometry of all the reactants are crucial factors for the formation of the two hollow nanocrystals. The Sn and Pb hollow nanoparticles were produced only when 1:(1.5-2) and 1:3 ratios of the Sn and Pb precursors to $NaBH_4$ were employed with a rapid injection, respectively.