DOI QR코드

DOI QR Code

One-pot Syntheses of Metallic Hollow Nanoparticles of Tin and Lead

  • Lee, Gae-Hang (Department of Chemistry and School of Molecular Science (BK 21), Korea Advanced Institute of Science and Technology (KAIST),Division of Materials Science, Korea Basic Science Institute (KBSI)) ;
  • Choi, Sang-Il (Department of Chemistry and School of Molecular Science (BK 21), Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Young-Hwan (Department of Chemistry and School of Molecular Science (BK 21), Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Joo-T. (Department of Chemistry and School of Molecular Science (BK 21), Korea Advanced Institute of Science and Technology (KAIST))
  • Published : 2009.05.20

Abstract

Hollow Sn and Pb nanoparticles have been prepared by a rapid injection of an aqueous solution of $SnCl_2$- poly(vinylpyrrolidone) (PVP, surfactant) and $Pb(OAc)_2${\cdot}$3H_2O-PVP$ into an aqueous solution of sodium borohydride (reducing agent) in simple, one-pot reaction at room temperature under an argon atmosphere, respectively. The two hollow nanoparticles have been fully characterized by TEM, HRTEM, SAED, XRD, and EDX analyses. Upon exposure to air, the black Pb hollow nanoparticles are gradually transformed into a mixture of Pb, litharge (tetragonal PbO), massicot (orthorhombic PbO), and $Pb_5O_8$. The order and speed of mixing of the reactants between the metal precursor-PVP and the reductant solutions and stoichiometry of all the reactants are crucial factors for the formation of the two hollow nanocrystals. The Sn and Pb hollow nanoparticles were produced only when 1:(1.5-2) and 1:3 ratios of the Sn and Pb precursors to $NaBH_4$ were employed with a rapid injection, respectively.

Keywords

References

  1. Kim, S.-W.; Kim, M.; Lee, W. Y.; Hyeon, T. J. Am. Chem. Soc. 2002, 124, 7642 https://doi.org/10.1021/ja026032z
  2. Liang, H.-P.; Zhang, H.-M.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J.; Bai, C.-L. Angew. Chem. Int. Ed. 2004, 43, 1540 https://doi.org/10.1002/anie.200352956
  3. Yang, J.; Lee, J. Y.; Too, H.-P.; Valiyaveettil, S. J. Phys. Chem. B 2006, 110, 125 https://doi.org/10.1021/jp055306c
  4. Mathiowitz, E.; Jacob, J. S.; Jon, Y. S.; Carino, G. P.; Chickering, D. E.; Chaturvedi, P.; Santos, C. A.; Vijayaraghavan, K.; Montgomery, S.; Bassett, M.; Morrell, C. Nature 1997, 386, 410 https://doi.org/10.1038/386410a0
  5. Son, S. J.; Reichel, J.; He, B.; Schuchman, M.; Lee, S. B. J. Am. Chem. Soc. 2005, 127, 7316 https://doi.org/10.1021/ja0517365
  6. Im, S. H.; Jeong, U.; Xia, Y. Nature Mater. 2005, 4, 671 https://doi.org/10.1038/nmat1448
  7. Rapoport, L.; Bilik, Yu.; Feldman, Y.; Homyonfer, M.; Cohen, S. R.; Tenne, R. Nature 1997, 387, 791 https://doi.org/10.1038/42910
  8. Yin, Y.; Rioux, R. N.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711 https://doi.org/10.1126/science.1096566
  9. Sun, Y.; Mayers, B.; Xia, Y. Adv. Mater. 2003, 15, 641 https://doi.org/10.1002/adma.200301639
  10. Yin, Y.; Erdonmez, C.; Aloni, S.; Alivisatos, A. P. J. Am. Chem. Soc. 2006, 128, 2671
  11. Sun, Y.; Mayers, B.; Xia, Y. Nano Lett. 2002, 2, 481 https://doi.org/10.1021/nl025531v
  12. Kim, S. J.; Ah, C. S.; Jang, D.-J. Adv. Mater. 2007, 19, 1064 https://doi.org/10.1002/adma.200601646
  13. Mayers, B.; Jiang, X.; Sunderland, D.; Cattle, B.; Xia, Y. J. Am. Chem. Soc. 2003, 125, 13364 https://doi.org/10.1021/ja0379722
  14. Liang, H.-P.; Guo, Y.-G.; Zhang, H.-M.; Hu, J.-S.; Wan, L.-J.; Bai, C.-L. Chem. Comm. 2004, 13, 1496
  15. Breen, M. L.; Dinsmore, A. D.; Pink, R. H.; Qadri, S. B.; Ratna, B. R. Langmuir 2001, 17, 903 https://doi.org/10.1021/la0011578
  16. Liang, Z. J.; Susha, A.; Caruso, F. Chem. Mater. 2003, 15, 3176 https://doi.org/10.1021/cm031014h
  17. Jiang, P.; Bertone, J. F.; Colvin, V. L. Science 2001, 291, 453 https://doi.org/10.1126/science.291.5503.453
  18. Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. Science 2003, 302, 419 https://doi.org/10.1126/science.1089171
  19. Lu, L. H.; Capek, R.; Kornowski, A.; Gaponik, N.; Eychmuller, A. Angew. Chem. Int. Ed. 2005, 44, 5997 https://doi.org/10.1002/anie.200501471
  20. Casella, M. L.; Siri, G. J.; Santori, G. F.; Ferretti, O. A. Langmuir 2000, 16, 5639 https://doi.org/10.1021/la991437r
  21. Noh, M.; Kim, Y.; Kim, M. G.; Lee, H.; Kim, H.; Kwon, Y.; Lee, Y.; Cho, J. Chem. Mater. 2005, 17, 3320 https://doi.org/10.1021/cm0504337
  22. Hsu, Y. J.; Lu, S.-Y.; Lin, Y.-F. Small 2006, 2, 26 https://doi.org/10.1002/smll.200500256
  23. Yang, C.-S.; Liu, Y. Q.; Kauzlarich, S. M. Chem. Mater. 2000, 12, 983 https://doi.org/10.1021/cm990529z
  24. Kittel, C. Introduction to Solid State Physics; John Wiley & Sons: New York, 1996
  25. Wang, Y.; Xia, Y. Nano Lett. 2004, 4, 2047 https://doi.org/10.1021/nl048689j
  26. Veith, M.; Frères, J.; König, P.; Schütt, O.; Huch, V.; Blin, J. Eur. J. Inorg. Chem. 2005, 3699
  27. Vasquez, Y.; Sra, A. K.; Schaak, R. E. J. Am. Chem. Soc. 2005, 127, 12504 https://doi.org/10.1021/ja054442s
  28. Borodko, Y.; Habas, S. E.; Koebel, M.; Yang, P.; Frei, H.; Somorjai, G. A. J. Phys. Chem. B 2006, 110, 23052 https://doi.org/10.1021/jp063338+
  29. Wong, M. S.; Cha, J. N.; Choi, K.-S.; Deming, T. J.; Stucky, G. D. Nano Lett. 2002, 2, 583 https://doi.org/10.1021/nl020244c
  30. Song, Y.; Garcia, R. M.; Dorin, R. M.; Wang, H.; Qiu, Y.; Shelnutt, J. A. Angew. Chem. Int. Ed. 2006, 45, 8126 https://doi.org/10.1002/anie.200602403
  31. Halder, A.; Ravishankar, N. J. Phys. Chem. B 2006, 110, 6595 https://doi.org/10.1021/jp056648l

Cited by

  1. Rational synthesis of Pt spheres with hollow interior and nanosponge shell using silica particles as template vol.47, pp.13, 2011, https://doi.org/10.1039/c0cc05233g
  2. Systematical analysis of chemical methods in metal nanoparticles synthesis vol.50, pp.1, 2016, https://doi.org/10.1134/S0040579516010127
  3. The Formation of Hollow Lead Structures on the Surface of PbSe Films Treated in Argon Plasma vol.44, pp.6, 2018, https://doi.org/10.1134/S1063785018060305
  4. Sacrificial seed mediated synthesis of copper nanopots by a modified polyol process vol.6, pp.4, 2011, https://doi.org/10.1080/17458080.2010.506521