• Title/Summary/Keyword: Poly(DCPD)

Search Result 6, Processing Time 0.02 seconds

Preparation of Poly-DCPD/Silicate Nanocomposites and Their Physical and Mechanical Properties (Poly-DCPD/실리케이트 나노복합재료의 제조 및 물리적, 기계적 물성)

  • Hong Chae-Hwan;Song Suk-Woo;Nam Byeong-Uk;Cha Bong-Jun;Kim Baek-Jin
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.311-317
    • /
    • 2006
  • Poly-DCPD and poly-DCPD/silicates hybrids were prepared by in-situ ROMP poly-merization using $WCl_6$ catalyst. Good dispersion of silicates in DCPD medium can be accomplished by sonication method. Compared with nanocomposites prepared using $Na^+MMT$, the nanocomposites with CL 15A showed well dispersed silicate's morphology. superior thermal and mechanical properties. Additionally, well dispersed silicates in DCPD matrix enhanced the gas barrier property of the nanocomposites.

Bulk Coordination Polymerization of Dicyclopentadiene (DCPD) by Pd Complexes Containing β-Ketoiminate or β-Diketiminate Ligands

  • Lee, Eung Jun;Kim, Ho Sup;Lee, Byoung Ki;Hwang, Woon Sung;Sung, Ik Kyoung;Lee, Ik Mo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4131-4136
    • /
    • 2012
  • Several palladium complexes containing ${\beta}$-ketoiminate and ${\beta}$-diketiminate ligands successfully produced poly(DCPD) possibly via vinyl addition. It was found that catalysts with ${\beta}$-diketiminate ligands containing bulkier aryl substituents showed the highest activity in the presence of MAO as a cocatalyst. Purity of DCPD is quite essential for the higher activity and small amount of organic solvent such as $CH_2Cl_2$ and toluene is required to reduce the viscosity of the reactant mixture for the higher activity. $^1H$ NMR spectra of produced polymers with N,N-dimethylanilinium tetra(pentafluorophenyl)borate (N,N-DAPFAr"$_4$) show that 5,6-double bond of DCPD is removed with 2,3-double bond remaining. Produced poly(DCPD) with MAO cocatalyst is quite rigid and insoluble in common organic solvents but rather brittle.

Manufacturing and Numerical Analysis of Glass Fiber Chopped Strand Mat Reinforced p-DCPD Composites Processed by S-RIM (S-RIM을 이용한 Glass Fiber Chopped Strand Mat 강화 p-DCPD 복합재료 제작 및 수치해석을 통한 공정 시간 예측)

  • YOO, HYEONGMIN;UM, MOONKWANG;CHOI, SUNGWOONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.629-634
    • /
    • 2019
  • Dicyclopentadiene is a low viscosity resin which forms a poly-dicyclopentadiene rapidly through ring opening metathesis polymerization (ROMP). This poly-dicyclopentadiene has outstanding properties of low-temperature, water and impact resistances. Due to these advantages, military and offshore structures try to apply the DCPD composites by using liquid composite molding process. In this study, 14%, 38% volume fraction fiber glass strand mat reinforced p-DCPD composites processed by structural reaction injection molding (S-RIM) which has resin-catalsyt mixing head and glass fiber preform in the mold. Additionally, S-RIM numerical analysis was conducted to predict the process time depending on fiber volume fraction and mold temperature. The process time is shorter when it has the lower fiber volume fraction or the higher mold temperature. At higher mold temperature, it is necessary to set the maximum mold temperature considering the resin curing time.

Interfacial and Mechanical Properties of MGF Reinforced p-DCPD Composites with Surface Treatments (MGF 표면처리에 따른 p-DCPD 복합재료의 계면 및 기계적 특성 연구)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Ha, Jung-Chan;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.282-287
    • /
    • 2016
  • p-DCPD (poly dicyclopentadiene) is the resin that the versatile mechanical properties can be changeable via the control of inner monomer and catalysts. In this work, to improve the strength of composites, surface treated MGF (milled glass fiber) was used as an reinforcement in p-DCPD by molybdenum (Mo) catalyst matrix. The optimum concentration of surface treatment was obtained and the cohesion of MGF themselves increased with concentration. In case of 0.2 wt% silane concentration, the maximized mechanical properties of MGF/p-DCPD composite exhibited because of minimized MGF cohesion. When butyl silane showing minimizing cohesion was used as the optimized alkyl length, high tensile and flexure strength exhibited due to the steric hindrance effect among MGFs. Mechanical and their fractured surfaces of MGF/p-DCPD composites was compared for 4 different chemical functional groups. Norbornene functional groups containing similar chemical structure to DCPD matrix exhibited higher interfacial adhesion between MGFs and DCPD matrix.

Calcium Phosphate Bone Cement Based on Wet Prepared Dicalcium Phosphate

  • Chang, Myung Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.480-491
    • /
    • 2018
  • Calcium phosphates (CaP) were prepared by a wet chemical method. Micro-crystalline dicalcium phosphate (DCPD) was precipitated at $37^{\circ}C$ and pH 5.0 using $Ca(OH)_2$ and $H_3PO_4$. The precipitated DCPD solution was kept at $37^{\circ}C$ for 96 h. Artificial bone cement was composed of DCPD, $Ca(H_2PO_4)_2{\cdot}H_2O$ (MCPM), and $CaSO_4{\cdot}1/2H_2O$, $H_2O$ and aqueous poly-phosphoric acid solution. The wet prepared CaP powder was used as a matrix for the bone cement recipe. With the addition of aqueous poly-phosphoric acid, the cement hardening reaction was started and the CaP bone cement blocks were fabricated for the mechanical strength measurement. For the tested blocks, the mechanical strength was measured using a universal testing machine, and the microstructure phase analysis was done by field emission scanning electron microscopy and X-ray diffraction. The cement hardening reaction occurred through the decomposition and recrystallization of MCPM and $CaSO_4{\cdot}1/2H_2O$ added on the surface of the wet prepared CaP, and this resulted in grain growth in the bone cement block.

Interfacial Evaluation and Microfailure Sensing of Nanocomposites by Electrical Resistance Measurements and Wettability (전기저항측정법 및 젖음성을 이용한 나노복합재료의 미세파손 감지능 및 계면물성 평가)

  • Park, Joung-Man;Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.138-144
    • /
    • 2017
  • Damage sensing of polymer composite films consisting of poly(dicyclopentadiene) p-DCPD and carbon nanotube (CNT) was studied experimentally. Only up to 1st ring-opening polymerization occurred with the addition of CNT, which made the modified film electrically conductive, while interfering with polymerization. The interfacial adhesion of composite films with varying CNT concentration was evaluated by measuring the wettability using the static contact angle method. 0.5 wt% CNT/p-DCPD was determined to be the optimal condition via electrical dispersion method and tensile test. Dynamic fatigue test was conducted to evaluate the durability of the films by measuring the change in electrical resistance. For the initial three cycles, the change in electrical resistance pattern was similar to the tensile stress-strain curve. The CNT/p-DCPD film was attached to an epoxy matrix to demonstrate its utilization as a sensor for fracture behavior. At the onset of epoxy fracture, electrical resistance showed a drastic increase, which indicated adhesive fracture between sensor and matrix. It leads to prediction of crack and fracture of matrix.