• Title/Summary/Keyword: Pollutant removal capacity

Search Result 36, Processing Time 0.024 seconds

Distribution and Nutrient Removal Capacity of Aquatic Plants in Relation to Pollutant Load from the Watershed of Youngsan River (영산강 유역으로부터 유입되는 오염부하량에 따른 수생식물의 분포, 질산환원효소 활성 및 그 정화능)

  • Ihm, Byung-Sun;Ha-song Kim;Jeom-Sook Lee;KyeHong Suh
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.487-496
    • /
    • 1996
  • This study was conducted to investigate pollutant loading, were quality and plant distribution of 8 streams which are tributaries of the Youngsan River. The nitrate reductase activity (NRA) and nutrient removall capacity of the most frequently occurring aquatic plants on streamside were also determined. As a result, the pollutant loading appeared to be correlated with the area of watershed, while the water quality was related to the land use pattern of each steam. The aquatic plants were distributed differently among the streams; Hydrilla verticillata - Potamogeton crispus, Numphoides peltata - Hydrocharis dubia and Polygonum thunbergii - Phragmites japonica were dominant at the Orye Chon, Jungan Chon, Whangryong River and Jiseok Chon, while potamogeton crispus - Lemma paucicostata, Zizania latifolia - Phragmites communis were dominant at the Youngam Chon and Munpyeong Chon. Persicaria hydropiper and Echinochloa crus-galli var. oryzicola were dominant at Kwangju Chon which was polluted with domestic wastewater. >From the measurement of leaf NRA for dominant species, the highest value of NRA was shown by the Polygonum thunbergii, followed by Oenanthe javanica > Phragmites communis > Zizania latifolia > Lemma paucicostata. The highest nitrogen and phosphorus removal capacity was found in Phragmites communis.

  • PDF

Estimation of Nonpoint Pollutant Removal Capacity in the Buffer Strip with AnnAGNPS Model (AnnAGNPS 모형을 이용한 수변구역의 비점오염물질 제거능 산정)

  • Park, Yun Hee;Kim, Tae Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.22-31
    • /
    • 2006
  • AnnAGNPS model would be applied to simulate the pollutant removal capacity with the buffer strip in the Deachung reservoir watershed. In 2002, 2,270 tons of TN and 221 tons of TP were discharged from the nonpoint source pollutants in this watershed. During the rainy season, from June to September, 66.4% of TN and 71.9% of TP resulted from nonpoint source loads. AnnAGNPS model was also used to simulate the nutrients removal capacity from the buffer strip under the condition that the present landuse would be changed to forest. As the result of simulation, the removal rates of nutrients from the buffer strip of Daecheong reservoir watershed are 406 tons of TN, 39 tons of TP, which means reduction rates are TN 17.9%, TP 17.8%, respectively.

Effect of Biofilter Operation Parameters on Dimethyl Disulfide Removal : Loading, Time, and Concentration

  • Arpacioglu, Bora C.;Kim, Jo-Chun;Allen, Eric R.;Kim, Seoung-Hyun
    • Journal of Environmental Science International
    • /
    • v.11 no.8
    • /
    • pp.783-791
    • /
    • 2002
  • A laboratory-scale dual-column biofilter system was used to study the biofiltration of dimethyl disulfide(DMDS). The biofiltration of DMDS was found to depend on the pollutant loadings rather than the inlet concentrations. It was estimated that the pollutant was only inhibitory to the operation of the biofilters at DMDS concentrations greater than 5500 ppmv A residence time of 30 seconds(120 m$^3$/m$^2$/h volumetric loading) was determined as appropriate for efficient operation(>90%). The maximum elimination capacity for both compost mixtures under the current experimental conditions was found to range from 7.5 to 10 g-DMDS/m$^3$/h. A lower DMDS maximum elimination capacity was exhibited under acidified conditions.

Evaluation of the Impacts of Water Quality Management in Kyongan Stream Watershed using SWAT Model (SWAT 모델을 이용한 경안천 유역의 수질관리 영향 평가)

  • Jang, Jae-Ho;Yoon, Chun-Gyeong;Jung, Kwang-Wook;Kim, Hyung-Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.387-398
    • /
    • 2010
  • SWAT model would be applied to evaluate the pollutant removal capacity with various best management practices (BMPs) in Kyongan stream watershed which plays an important role in water quality conservation and improvement of Paldang reservoir. The methods for the representation of various BMPs scenarios with SWAT is developed and evaluated. Riparian buffer strip, agricultural conservation practices to reduce fertilizer, sediment, and nutrients occurring from farm field (Grassed swale, Contour farming/Parallel terrace, Field border, Farm retention pond, Grade stabilization structure), and washland such as wetland and pond to extend detention and improve water quality are represented in SWAT. And to represent the expansion of existing Waste Water Treatment Plants (WWTPs) in Soil and Water Assessment Tool (SWAT), reduction effect for point source pollutants was simulated. As the result of simulation, the removal rates of SS, TN, TP from scenarios of Kyongan stream watershed are the average annual SS yield by 5.2% to 69.2%, the average annual TN yield by 0.5% to 26.3%, and the average annual TP yield by 1.3% to 32.5%, respectively. This study has demonstrated that the SWAT is a very reliable and useful water quality and quantity assessment tool, and the BMPs representation in SWAT for watershed management is able to effectively simulate in Kyongan Stream watershed.

Development of tree box filter LID system for treating road runoff (LID 시설로서 도로에 적용 가능한 수목여과시설 개발)

  • Choi, Jiyeon;Son, Younggyu;Lee, Soyoung;Lee, Yuhwa;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.407-412
    • /
    • 2013
  • The aim of this study was to develop a tree box filter system, an example of Low Impact Development technology, for treating stormwater runoff from road. Monitoring of storm events was performed between June 2011 and November 2012 to evaluate the system performance during wet day. Based on the results, all runoff volume generated by rainfall less than 2 mm was stored in the system. The minimum volume reduction of 20% was observed in the system for rainfall greater than 20 mm. The greatest removal efficiency was exhibited by the system for total heavy metals ranging from 70 to 73% while satisfactory removal efficiency was exhibited by the system for particulate matters, organic matters and nutrients ranging from 60 to 68%. The system showed greater pollutant removal efficiency of 67 to 83% for rainfall less than 10 mm compared to rainfall greater than 10 mm which has 39 to 75% pollutant removal efficiency. The system exhibited less pollutant reduction for rainfall greater than 10 mm due to the decreased retention capacity of the system for increased rainfall. Overall, the system has proved to be an option for stormwater management that can be recommended for on-site application. Similar system may be designed based on several factors such as rainfall depth, facility size and pollutant removal efficiency.

The Comparison of Disinfection Technologies for Managing Antibiotic Resistance ; Chlrorination, Ozonation and Electron Beam (항생제 내성 제어를 위한 소독 기법간의 비교 ; 염소, 오존 및 전자빔)

  • Oh, Junsik;Kim, Sungpyo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.797-803
    • /
    • 2013
  • Recently, a number of countries are now considering the reuse of effluents from wastewater treatment for various water applications. To improve the reuse of wastewater effluent, the development of appropriate micro-pollutant removal technology is necessary. Although several researche have been studied for removing micro-pollutants in water, little study has been conducted for the removal of emerging contaminant such as antibiotic resistant genes (ARGs) by disinfection processes. Therefore, the aim of this study is to compare the capacity of disinfection technologies such as chlorination, ozone, and electron beam, for removing antibiotic resistant bacteria (ARB) and ARGs. Based on this study, better ARG removal can be achieved by ozonation and electron beam. Relatively, high CT values of chlorination or ozonation are needed to remove ARB and ARG compared to conventional pathogens.

A Study on Efficient Operation of Cosmetic Wastewater Treatment Facility (화장품 폐수처리시설의 효율제고를 위한 처리비 영향인자에 관한 연구)

  • 장명옥;조춘구
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.89-106
    • /
    • 1999
  • This research was undertaken to manage the waste treatment facility in cosmetic plants more effectively, The discharge and the treatment of pollutant in cosmetic plants were analyzed. And several factors which had an influential effect of the treatment cost, were found out. Effective management methods are proposed. Since average operating rate is estimated from 29% to 56%, the facility has an 44% to 71% surplus capacity. The pollutant removal rate influences highly on the treatment cost. The amount of MLSS is the factor that effects the removal rate. Chemical cost and the amount of the sludge are the influencing factors. To reduce the waste water treatment cost,-the saving of SV3O use and the management of MLSS amount are essential.

  • PDF

Porosity and Liquid-phase Adsorption Characteristics of Activated Carbons Prepared From Peach Stones by $H_3PO_4$

  • Attia, Amina A.;Girgis, Badie S.;Tawfik, Nady A.F.
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.89-95
    • /
    • 2005
  • Crushed peach stone shells were impregnated with $H_3PO_4$ of increasing concentrations (30-70%) followed by heat treatment at 773 K for 3 h. Produced carbons (ACs) were characterized by $N_2$ adsorption at 77 K using the BET-equation and the ${\alpha}$-method. High surface area microporous ACs were obtained, with enhanced internal pore volume, as function of % $H_3PO_4$. Adsorption isotherms from aqueous solution were determined for methylene blue (MB) and p-nitrophenol (PNP), as representatives for dye and phenolics pollutant molecules. Application of the Langmuir model proved the high limiting capacity towards both solute molecules, MB was uptaken in increasing amounts as function of $H_3PO_4$ concentration and generated porosity. High removal of PNP was almost the same irrespective of porosity characteristics. Competitive adsorption of $H_2O$ molecules on the hydrophilic carbon surface seems to partially reduce the available area to the PNP molecules. Application of the pseudo-second order law described well the fast adsorption (${\leq}$ 120 min) at two initial dye concentrations.

  • PDF

Development of a Commercial-scale RDF Boiler with Chain type Stoker (실증규모 체인스토커식 RDF전용보일러 개발)

  • Choi, Yeon-Seok;Kim, Byung-Gil;Roh, Nam-Sun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.813-816
    • /
    • 2009
  • A commercial-scale RDF boiler that its burning capacity is 400 kg-RDF/hr and steam production capacity is 2 ton/hr. It has a chain type stoker and waste heat recovery system. Heat exchanger is vertical water-pipe so that soot blowing and removal is convenient during operation. Dry scrubber, bag filter and activated carbon tower have been installed for the reduction of air pollutant gases and dust. Analysing data of pollutants from stack such as $SO_x$. $NO_x$ and dioxin shows so good results that the boiler system could comply the regulated emission limits.

  • PDF

Effect of the Presence of Soil on the Ferrous Catalyzed Sodium Persulfate Oxidation of Naphthalene (과황산나트륨과 제일철 촉매를 이용한 나프탈렌 산화 시 토양이 미치는 영향 평가)

  • Han, Dai-Sung;Yun, Yeo-Bog;Ko, Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • Batch tests were carried out to examine the influence of the presence of soil and Fe(II) sorption capacity of soil on the ferrous catalyzed sodium persulfate oxidation for the destruction of organic pollutants in the application of in-situ chemical oxidation. Laboratory column tests were also conducted to investigate the transport of oxidant and catalyst in contaminated groundwater. Test results proved that Fe(II) was adsorbed on soil surface, and thus soil behaved as a heterogeneous catalyst, enhancing the naphthalene removal rate up to 50%. Column tests that were conducted with and without dissolved Fe(II) showed that naphthalene removal ratio were 24% and 25%, respectively. The removal efficiency was not enhanced with dissolved Fe(II), since the dissolved Fe(II) flew out of the column as the oxidant progressively injected into the column saturated with Fe(II). It indicates that the injected oxidant could not interact with dissolved Fe(II). But target organic pollutant was degraded in soil column system, implying that sulfate radical was produced by the reaction of dissolved persulfate with Fe(II) adsorbed on soil.