• 제목/요약/키워드: Polishing and coating

검색결과 61건 처리시간 0.028초

Multi-con와 ALPT을 활용한 TiAlN코팅층 표면연마 초경호브의 절삭특성 및 공구수명 평가 (Evaluation Tool Life and Cutting Characteristics of Carbide Hob TiAlN Coating Surface Polishing Using Aero Lap Polishing Technology and Multi-con)

  • 천종필;편영식
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.848-854
    • /
    • 2012
  • SCM420 steel cutting gear to improve the durability is quenched. When quenching, increases surface hardness, a change of the physical properties and machinability or fall. This study, using a solid carbide hobs skiving hobbing gear cutting finishing. And cutting tool solid carbide TiAlN coating hove when TiAlN coating on the surface of multi-con polishing hob conducted aero lap nano polishing for each cutting. Experimental results conducted aero lap nano coating on the surface polishing tool machinability was excellent. And aero lap nano polishing tool results were reduced 2.5 times the tool wear compared to TiAlN coated tools. Excellent results were 1.42 times longer tool life.

기계적 연마 전처리가 인산망간 피막의 윤활 특성에 미치는 영향 (Effect of Mechanical Polishing Pretreatment on Tribological Properties of Manganese Phosphate Coating of Carbon Steel)

  • 김호영;노영태;전준혁;강호상
    • 한국표면공학회지
    • /
    • 제52권6호
    • /
    • pp.350-356
    • /
    • 2019
  • In this study, the effect of mechanical polishing of carbon steel on the tribological properties of manganese phosphate coating on carbon steel has investigated. The microstructure, surface morphology and chemical composition were analyzed by SEM, EDS, and XRD. The surface roughness test was carried out in order to calculate Rvk value by 3D laser microscopy. Also, the tribology property of manganese phosphate coating was tested by ball-on disk. In the results of EDS analysis, coating layer consists of elements such in Mn, P, Fe, and O. XRD showed that (Mn,Fe)5H2(PO4)4·4H2O in manganese phosphate coating layer was formed by the chemical reaction between manganese phosphate and elements in carbon steel. As the mechanical polishing degree increased, the friction coefficient was reduced. The rougher the mechanical polishing degree, the better corrosion resistance was obtained.

금속분리판의 Electro Polishing 및 CrN 코팅을 통한 PEMFC 성능 향상을 위한 연구 (A Study to Improve PEMFC Performance by Using Electro Polishing and CrN Coating on Metal Bipolar Plate)

  • 황성택;천승호;송준석;윤영훈;김병헌;장하;김대웅;현덕수;오병수
    • 한국자동차공학회논문집
    • /
    • 제22권4호
    • /
    • pp.65-71
    • /
    • 2014
  • As an important component of a fuel cell, the bipolar plate comprises a large proportion in the fuel cell's volume, weight and price. The bipolar plate is the most widely used; however, graphite bipolar plate is large in volume, brittle and therefore easily broken during assembling. In addition, due to its poor machinability, production costs a lot, unless mass production. Compared with the graphite bipolar plate, the metal bipolar plate has good machinability, high electric conductivity and strong mechanical strength; however, it corrodes easily and has a high contact resistance, so in order to prevent corrosion and reduce the contact resistance, the basic metal needs to be processed by use of electro polishing and coating. The water which is produced by electrochemical reactions in the fuel cell must be discharged smoothly. In this study, in order to prevent corrosion the processes of electro polishing and CrN coating were used. According to the presence or absence of these processes, the contact angles can be measured and different metal bipolar plates can be made, these plates can be used for comparing and analyzing the performance of the fuel cell.

Cu 용 슬러리 환경에서의 보호성 코팅이 융착 CMP 패드 컨니셔너에 미치는 영향 (Effect on protective coating of vacuum brazed CMP pad conditioner using in Cu-slurry)

  • 송민석;지원호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.434-437
    • /
    • 2005
  • Chemical Mechanical Polishing (CMP) has become an essential step in the overall semiconductor wafer fabrication technology. In general, CMP is a surface planarization method in which a silicon wafer is rotated against a polishing pad in the presence of slurry under pressure. The polishing pad, generally a polyurethane-based material, consists of polymeric foam cell walls, which aid in removal of the reaction products at the wafer interface. It has been found that the material removal rate of any polishing pad decreases due to the so-called 'pad glazing' after several wafer lots have been processed. Therefore, the pad restoration and conditioning has become essential in CMP processes to keep the urethane polishing pad at the proper friction coefficient and to allow effective slurry transport to the wafer surface. Diamond pad conditioner employs a single layer of brazed bonded diamond crystals. Due to the corrosive nature of the polishing slurry required in low pH metal CMP such as copper, it is essential to minimize the possibility of chemical interaction between very low pH slurry (pH <2) and the bond alloy. In this paper, we report an exceptional protective coated conditioner for in-situ pad conditioning in low pH Cu CMP process. The protective Cr-coated conditioner has been tested in slurry with pH levels as low as 1.5 without bond degradation.

  • PDF

인산을 이용한 법랑 코팅의 초윤활성 및 초기 시간에 대한 연구 (Study on the Superlubricity and Running-in Period of Vitreous Enamel Coating using Phosphoric Acid)

  • 한도렬;김태형;김대은
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.235-240
    • /
    • 2018
  • Superlubricity refers to the lubrication phenomenon that occurs when the friction coefficient is lower than 0.01. In recent years, this phenomenon has received a significant amount of attention because it can greatly contribute to the reduction of economic and environmental losses caused by friction and wear. In the case of acid lubricants, only ceramic materials can be used for superlubricity, and it takes a long running-in period to enter the superlubricity regime. In this work, we investigated the superlubricity effect of vitreous enamel coating on SUS304. We also examined the running-in period of vitreous enamel coating under phosphoric acid lubricant condition with respect to surface treatments. Drying and polishing methods were used to treat the vitreous enamel coating on the specimen. The friction experimental results revealed that superlubricity could be achieved with vitreous enamel coating. It was also found that the drying and polishing methods can significantly reduce the running-in period and improve the wear properties of vitreous enamel coating. In particular, the polishing method shortened the running-in period by approximately 99% and reduced the wear rate by approximately 99%, compared to nontreated vitreous enamel coating.

The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core

  • Kulunk, Tolga;Kulunk, Safak;Baba, Seniha;Ozturk, Ozgur;Danisman, Sengul;Savas, Soner
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.382-387
    • /
    • 2013
  • PURPOSE. Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. MATERIALS AND METHODS. Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 ${\mu}m$ aluminum oxide particles ($Al_2O_3$), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 ${\mu}m$ $Al_2O_3$ + Al coating and air particle abrasion with 50 ${\mu}m$ $Al_2O_3$ + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (${\alpha}$=.05). RESULTS. The highest bond strengths were obtained by air abrasion with 50 ${\mu}m$ $Al_2O_3$, the lowest bond strengths were obtained in polishing + Al coating group (P<.05). CONCLUSION. Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core.

실리콘 웨이퍼 연마장비용 왁스 스핀코팅장치의 내부기류 제어에 관한 전산유동해석 (CFD Analysis on the Internal Air Flow Control in a Wax Spin Coater of Silicon Wafer Polishing Station)

  • 김경진;김동주;박중윤
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2011
  • In this paper, the air flow induced by the rotating flat disk is numerically investigated in a hope to better understand the air flow structures inside the wax spin coater for a silicon wafer polishing station. Due to the complex inner geometry of actual spin coater such as the casing around the rotating ceramic block and servo motor, recirculation of air flow is inevitably found on the coating target if the internal space of spin coater is closed at the bottom and it could be the possible source of contamination on the wax coating. By numerical flow simulation, we found that it is necessary to install the air vent at the bottom and to apply the sufficient air suction in order to control the path of air flow and to eliminate the air recirculation zone above the spinning surface of coating target.

실리콘 웨이퍼 생산공정용 왁스 스핀코팅장치 내 기류 특성에 대한 3차원 전산유동해석 (A Three-Dimensional CFD Study on the Air Flow Characteristics in a Wax Spin Coater for Silicon Wafer Manufacturing)

  • 김용기;김동주;우마로프 알리세르;김경진;박준영
    • 한국기계가공학회지
    • /
    • 제10권6호
    • /
    • pp.146-151
    • /
    • 2011
  • Wax spin coating is a part of several wafer handling processes in the silicon wafer polishing station. It is important to ensure the wax layer free of contamination to achieve the high degree of planarization on wafers after wafer polishing. Three-dimensional air flow characteristics in a wax spin coater are numerically investigated using computational fluid dynamics techniques. When the bottom of the wax spin coater is closed, there exists a significant recirculation zone over the rotating ceramic block. This recirculation zone can be the source of wax layer contamination at any rotational speed and should be avoided to maintain high wafer polishing quality. Thus, four air suction ducts are installed at the bottom of the wax spin coater in order to control the air flow pattern over the ceramic block. Present computational results show that the air suction from the bottom is quite an effective method to remove or minimize the recirculation zone over the ceramic block and the wax coating layer.

고배율 도공층 구조 및 S/B latex 분포 분석을 위한 도공층 횡단면 제작 (Preparation of Cross-sectional Specimen for High Resolution Observation of Coating Structure and Visualization of Styrene/butadiene Latex Binder)

  • 김채훈;윤혜정;이학래
    • 펄프종이기술
    • /
    • 제44권4호
    • /
    • pp.16-24
    • /
    • 2012
  • To characterize the coating structure, diverse methods such as mercury intrusion, nitrogen adsorption and oil absorption methods have been developed and widely employed. These indirect techniques, however, have some limitation to explain the actual coating structure. Recently microscopic observation methods have been tried for analyzing structural characteristics of coating layers. Preparation of the undamaged cross section of a coating layer is essential for obtaining high quality image for analysis. In this study, distortion-free cross-section of the coating layer was prepared using a grinding and polishing technique. The coated paper was embedded in epoxy resin and cured. After curing the resin block it was ground with abrasive papers and then polished with diamond particle suspension and nylon cloth. Polished coating layer was sufficient enough to obtain undamaged cross sectional images with scanning electron microscope under backscattered electron image mode. In addition, the SEM images allowed distinction of the coating layer components. Also S/B latex film formed between pigment particles was visualized by osmium tetroxide staining. Pore size distribution and pore orientation were evaluated by image analysis from SEM cross-sectional images.