• Title/Summary/Keyword: Poisson equations

Search Result 192, Processing Time 0.023 seconds

𝔻-SOLUTIONS OF BSDES WITH POISSON JUMPS

  • Hassairi, Imen
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1083-1101
    • /
    • 2022
  • In this paper, we study backward stochastic differential equations (BSDEs shortly) with jumps that have Lipschitz generator in a general filtration supporting a Brownian motion and an independent Poisson random measure. Under just integrability on the data we show that such equations admit a unique solution which belongs to class 𝔻.

A CLASS OF NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS(SDES) WITH JUMPS DERIVED BY PARTICLE REPRESENTATIONS

  • KWON YOUNGMEE;KANG HYE-JEONG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.269-289
    • /
    • 2005
  • An infinite system of stochastic differential equations (SDE)driven by Brownian motions and compensated Poisson random measures for the locations and weights of a collection of particles is considered. This is an analogue of the work by Kurtz and Xiong where compensated Poisson random measures are replaced by white noise. The particles interact through their weighted measure V, which is shown to be a solution of a stochastic differential equation. Also a limit theorem for system of SDE is proved when the corresponding Poisson random measures in SDE converge to white noise.

ANALYSIS OF THE VLASOV-POISSON EQUATION BY USING A VISCOSITY TERM

  • Choi, Boo-Yong;Kang, Sun-Bu;Lee, Moon-Shik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.501-516
    • /
    • 2013
  • The well-known Vlasov-Poisson equation describes plasma physics as nonlinear first-order partial differential equations. Because of the nonlinear condition from the self consistency of the Vlasov-Poisson equation, many problems occur: the existence, the numerical solution, the convergence of the numerical solution, and so on. To solve the problems, a viscosity term (a second-order partial differential equation) is added. In a viscosity term, the Vlasov-Poisson equation changes into a parabolic equation like the Fokker-Planck equation. Therefore, the Schauder fixed point theorem and the classical results on parabolic equations can be used for analyzing the Vlasov-Poisson equation. The sequence and the convergence results are obtained from linearizing the Vlasove-Poisson equation by using a fixed point theorem and Gronwall's inequality. In numerical experiments, an implicit first-order scheme is used. The numerical results are tested using the changed viscosity terms.

Discretization of Pressure-Poisson Equation for Solving Incompressible Navier-Stokes Equations Using Non-Staggered Grid (정규격자를 사용한 비압축성 Navier-Stokes 방정식의 수치해석을 위한 압력 Poisson 방정식의 이산화)

  • Kim Y. G.;Kim H. T.;Kim J. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.96-101
    • /
    • 1998
  • Various discretiation methods of Laplacian operator in the Pressure-Poisson equation are investigated for the solution of incompressible Navier-Stokes equations using the non-staggered grid. Laplacian operators previously proposed by other researchers are applied to a Driven-Cavity problem. The computational results are compared with those of Ghia. The results show the characteristics of the discrete Laplacian operators.

  • PDF

Poisson Banach Modules over a Poisson C*-Algebr

  • Park, Choon-Kil
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.529-543
    • /
    • 2008
  • It is shown that every almost linear mapping h : $A{\rightarrow}B$ of a unital PoissonC*-algebra A to a unital Poisson C*-algebra B is a Poisson C*-algebra homomorph when $h(2^nuy)\;=\;h(2^nu)h(y)$ or $h(3^nuy)\;=\;h(3^nu)h(y)$ for all $y\;\in\;A$, all unitary elements $u\;\in\;A$ and n = 0, 1, 2,$\codts$, and that every almost linear almost multiplicative mapping h : $A{\rightarrow}B$ is a Poisson C*-algebra homomorphism when h(2x) = 2h(x) or h(3x) = 3h(x for all $x\;\in\;A$. Here the numbers 2, 3 depend on the functional equations given in the almost linear mappings or in the almost linear almost multiplicative mappings. We prove the Cauchy-Rassias stability of Poisson C*-algebra homomorphisms in unital Poisson C*-algebras, and of homomorphisms in Poisson Banach modules over a unital Poisson C*-algebra.

REMARKS ON FINITE ELEMENT METHODS FOR CORNER SINGULARITIES USING SIF

  • Kim, Seokchan;Kong, Soo Ryun
    • Honam Mathematical Journal
    • /
    • v.38 no.3
    • /
    • pp.661-674
    • /
    • 2016
  • In [15] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution we could get accurate solution just by adding the singular part. This approach works for the case when we have the accurate stress intensity factor. In this paper we consider Poisson equations with mixed boundary conditions and show the method depends the accrucy of the stress intensity factor by considering two algorithms.

A FINITE ELEMENT METHOD USING SIF FOR CORNER SINGULARITIES WITH AN NEUMANN BOUNDARY CONDITION

  • Kim, Seokchan;Woo, Gyungsoo
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get accurate solution just by adding the singular part. This approach works for the case when we have the reasonably accurate stress intensity factor. In this paper we consider Poisson equations defined on a domain with a concave corner with Neumann boundary conditions. First we compute the stress intensity factor using the extraction formular, then find the regular part of the solution and the solution.

A fast adaptive numerical solver for nonseparable elliptic partial differential equations

  • Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.1
    • /
    • pp.27-39
    • /
    • 1998
  • We describe a fast numerical method for non-separable elliptic equations in self-adjoin form on irregular adaptive domains. One of the most successful results in numerical PDE is developing rapid elliptic solvers for separable EPDEs, for example, Fourier transformation methods for Poisson problem on a square, however, it is known that there is no rapid elliptic solvers capable of solving a general nonseparable problems. It is the purpose of this paper to present an iterative solver for linear EPDEs in self-adjoint form. The scheme discussed in this paper solves a given non-separable equation using a sequence of solutions of Poisson equations, therefore, the most important key for such a method is having a good Poison solver. High performance is achieved by using a fast high-order adaptive Poisson solver which requires only about 500 floating point operations per gridpoint in order to obtain machine precision for both the computed solution and its partial derivatives. A few numerical examples have been presented.

  • PDF

FINITE ELEMENT SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATION WITH MULTIPLE CONCAVE CORNERS

  • Kim, Seokchan;Woo, Gyungsoo
    • Honam Mathematical Journal
    • /
    • v.40 no.4
    • /
    • pp.785-794
    • /
    • 2018
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous Dirichlet boundary condition with one corner singularity at the origin, and compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. This approach uses the polar coordinate and the cut-off function to control the singularity and the boundary condition. In this paper we consider Poisson equations with multiple singular points, which involves different cut-off functions which might overlaps together and shows the way of cording in FreeFEM++ to control the singular functions and cut-off functions with numerical experiments.

EXISTENCE UNIQUENESS AND STABILITY OF NONLOCAL NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH RANDOM IMPULSES AND POISSON JUMPS

  • CHALISHAJAR, DIMPLEKUMAR;RAMKUMAR, K.;RAVIKUMAR, K.;COX, EOFF
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.107-122
    • /
    • 2022
  • This manuscript aims to investigate the existence, uniqueness, and stability of non-local random impulsive neutral stochastic differential time delay equations (NRINSDEs) with Poisson jumps. First, we prove the existence of mild solutions to this equation using the Banach fixed point theorem. Next, we demonstrate the stability via continuous dependence initial value. Our study extends the work of Wang, and Wu [16] where the time delay is addressed by the prescribed phase space 𝓑 (defined in Section 3). To illustrate the theory, we also provide an example of our methods. Using our results, one could investigate the controllability of random impulsive neutral stochastic differential equations with finite/infinite states. Moreover, one could extend this study to analyze the controllability of fractional-order of NRINSDEs with Poisson jumps as well.