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FINITE ELEMENT SOLUTIONS OF PARTIAL

DIFFERENTIAL EQUATION WITH MULTIPLE

CONCAVE CORNERS

Seokchan Kim and Gyungsoo Woo∗,∗∗

Abstract. In [8] they introduced a new finite element method for
accurate numerical solutions of Poisson equations with corner sin-
gularities. They consider the Poisson equations with homogeneous
Dirichlet boundary condition with one corner singularity at the ori-
gin, and compute the finite element solution using standard FEM
and use the extraction formula to compute the stress intensity fac-
tor, then pose a PDE with a regular solution by imposing the non-
homogeneous boundary condition using the computed stress inten-
sity factor, which converges with optimal speed. From the solution
they could get an accurate solution just by adding the singular part.
This approach uses the polar coordinate and the cut-off function to
control the singularity and the boundary condition.

In this paper we consider Poisson equations with multiple sin-
gular points, which involves different cut-off functions which might
overlaps together and shows the way of cording in FreeFEM++ to
control the singular functions and cut-off functions with numerical
experiments.

1. Introduction

Let Ω be an open, bounded polygonal domain in R2 and let Γ be
the boundary of Ω. For a given function f ∈ L2(Ω), as a model prob-
lem, we consider the following Poisson equation with Dirichlet boundary
condition: {

−∆u = f in Ω,
u = 0 on Γ,

(1.1)
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where ∆ stands for the Laplacian operator.
If the domain is convex or smooth, the solution belongs to H2(Ω) and

we expect to have an optimal convergence rate with the standard finite
element method. But this is not true for Poisson problems defined on
non-convex domains. In these cases, the solutions of Poisson problems
have singular behavior at those concave corners and such singular be-
havior affects the accuracy of numerical solution throughout the whole
domain.

For overcoming this difficulty, roughly speaking, there were two groups
of people who use two different approaches: mesh refinements and aug-
menting the space of trial/test functions. (See [1, 5, 3, 8] and references
therein.) Obviously, the method in [8] belongs to the second approach.

In this paper we consider the case the model problem (1.1) with
multiple concave corners, which make the solution involves the same
number of singular functions.

It is well-known that the singular function s and its dual singular
function s− can be expressed by

s = s(r, θ) = r
π
ω sin

πθ

ω
, s− = s−(r, θ) = r−

π
ω sin

πθ

ω
(1.2)

for the the case with only one concave corner at the origin, and the
unique solution u ∈ H1

0 (Ω) has the representation

u = w + ληs, (1.3)

where w ∈ H2(Ω) ∩ H1
0 (Ω), and η is a smooth cut-off function which

equals one identically in a neighborhood of the origin and the support
of η is small enough so that the function ηs vanishes identically on Γ.
(Here, (r, θ) is polar coordinate at the origin.)

We need to use the polar coordinate systems (ri, θi) and the corre-
sponding cut-off functions ηi which equals one identically in a neighbor-
hood of the concave corner Pi with inner angle ωi and the support of ηi
is small enough so that the function ηisi vanishes identically on Γ. Here,
we have that the singular function si and its dual singular function s−i
can be expressed by

si = si(ri, θi) = r
π
ωi
i sin

πθi
ωi
, s−i = s−i(ri, θi) = r

− π
ωi sin

πθi
ωi
, (1.4)

and the unique solution u ∈ H1
0 (Ω) has the representation (see [6, 4])

u = w +
∑
i

λiηisi, (1.5)
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where w ∈ H2(Ω) ∩ H1
0 (Ω), and ηi is a smooth cut-off function which

equals one identically in a neighborhood of the concave point Pi and the
support of ηi is small enough so that the function ηisi vanishes identically
on Γ. (Here, (ri, θi) is polar coordinate around Pi.) Note that each si
and s−i are harmonic functions in Ω.

The coefficient, λi, is called ‘stress intensity factor’ and can be com-
puted by the following extraction formula (see [4]):

λi =
1

π

∫
Ω
fηis−idx+

1

π

∫
Ω
u∆(ηis−i)dx. (1.6)

In [8] they introduced new partial differential equation, whose solu-
tion is in H2(Ω) with the same input function by simple changing of
the boundary condition. Using this partial differential equation, they
suggested an efficient algorithm to compute the numerical solution for
Poisson equation with singular domain.

In this paper we consider a partial differential equation with multi-
ple singular points. We use the algorithm suggested in [8] with minor
changes suitable for the case.

Step 1) Solve the partial differential equation (1.1) using the stan-
dard finite element method.

Step 2) Compute the stress intensity factor λi using the extraction
formular (1.6).

Step 3) Pose new partial differential equation which has zero stress
intensity factor and find the solution w{

−∆w = f in Ω,
w = −

∑
i λisi|Γ on Γ,

(1.7)

Step 4) Set u = w +
∑

i λisi.

Remark 1.1. The stress intensity factor computed from the extrac-
tion formula depends on the regularity of the solution u. So, the con-
vergence of the solution depend on the accuracy of the stress intensity
factors, by which we use to find u in the algorithm.

In Section 2, we suggest a modified algorithm which is introduced in
[8] originally and some basic theorems and finite element approximation
theories in Section 2 and 3, an example will be given in Section 4 with
computational results using FreeFEM++ code.([7])

We will use the standard notation and definitions for the Sobolev
spaces Ht(Ω) for t ≥ 0; the standard associated inner products are de-
noted by (·, ·)t,Ω, and their respective norms and seminorms are denoted
by ‖ · ‖t,Ω and | · |t,Ω. The space L2(Ω) is interpreted as H0(Ω), in which



788 Seokchan Kim and Gyungsoo Woo

Figure 1. A domain with multiple concave corners and
corresponding polar coordinates

case the inner product and norm will be denoted by (·, ·)Ω and ‖ · ‖Ω,
respectively, although we will omit Ω if there is no chance of misunder-
standing. H1

D(Ω) = {u ∈ H1(Ω) : u = 0 on ΓD}.

2. Stress Intensity Factors and Corresponding Algorithm

We need cut-off functions to derive the singular behavior of the prob-
lem. We set

Bi(p1; p2) = {(ri, θi) : p1 < r < p2 and 0 < θi < ωi} ∩ Ω

and

Bi(p1) = Bi(0; p1),

and define a smooth enough cut-off function of r as follows:

ηi,ρ(r) =


1 in Bi(

1
2ρ),

1
16{8− 15p(r) + 10p(r)3 − 3p(r)5} in Bi(

1
2ρ; ρ),

0 in Ω\Bi(ρ),

(2.1)

with p(r) = 4r/ρ− 3. Here, ρ is a parameter which will be determined
so that the singular part ηi,ρs has the same boundary condition as the
solution u of the Model problem, where si is the singular function which
is given in (1.4). Note each ηi,ρ(r) is C2.

2.1. Singularity and Extraction Formula

The solution of the Poisson equation on the polygonal domain is well
known as in [2, 6]. Given f ∈ L2(Ω), if we assume there are I reentrant
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corners Pi with inner angles π < ωi < 2π, then there exists a unique
solution u and in addition there exist fixed numbers λi such that

u−
∑
i∈I

λisi ∈ H2(Ω). (2.2)

By using the cut-off function ηi = ηi,ρ we may write

u = w +
∑
i∈I

λiηisi, (2.3)

with w ∈ H2(Ω) ∩H1
0 (Ω).

The constant λi is referred as stress intensity factors and computed
by the following formula ([4]);

Lemma 2.1. The stress intensity factor λi can be expressed in terms
of u and f by the following extraction formula

λi =
1

π

∫
Ω
fηs−idx+

1

π

∫
Ω
u∆(ηis−i)dx. (2.4)

Assume that (1.1) has a solution u as in (2.3) and the stress intensity
factor λi are known, then we introduce the following boundary value
problem:. {

−∆w = f in Ω,
w = −

∑
i∈I λisi on Γ,

(2.5)

Note the input function f is the same as in (1.1) and si = si|Γ is the
restriction of the singular function si to the boundary Γ.

2.2. Regularity of New Partial Differential Equation

The following theorems show (2.5) has a regular solution.

Theorem 2.2. If (1.1) has a solution u as in (2.3) with the stress
intensity factors λi, then (2.5) has a unique solution w in H2(Ω).

Proof. The theorem comes from the uniqueness of the solution of the
following Poisson problem;{

−∆p = 0 in Ω,
p = −

∑
i∈I λisi on Γ.

(2.6)

( Note p = −
∑

i∈I λisi is the unique solution and the coefficient of
the singular function si is the stress intensity factors.) By adding two
equations, (1.1) and (2.6), we have the following equation{

−∆w = f in Ω,
w = −

∑
i∈I λisi on Γ,

(2.7)

whose solution w = u+ p belongs to H2(Ω).
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Theorem 2.3. If λi is the stress intensity factors given by (2.4)
with the solution u in (1.1) and w is the solution of (2.5), then u =
w +

∑
i∈I λisi is the unique solution of (1.1).

Proof. We only need to show u = w +
∑

i∈I λisi is the solution to
(1.1) when w is the solution of (2.5). The proof comes from the fact
that ∆si = 0 and the linearity of the operator.

Note we have u = w − p = w +
∑

i∈I λisi from the above theorems.

2.3. Corresponding Algorithm

Now we suggest an algorithm in a variational form for the solution
u of the model problem (1.1). First we use the standard Finite El-
ement Method and get an approximated solution, then compute the
stress intensity factors λi form the formula in (2.4). Then we solve a
non-homogeneous problem with more regular solution with the changed
boundary data using the approximated stress intensity factors.

The following is the proposed algorithm:
The algorithm (V)

V-1: To find u ∈ H1
0 (Ω) such that

(∇u,∇v) = (f, v), ∀ v ∈ H1
0 (Ω). (2.8)

V-2: Then compute λi by (2.4) with u.
V-3: To find w such that w +

∑
i λisi ∈ H1(Ω) and

(∇w,∇v) = (f, v), ∀ v ∈ H1(Ω). (2.9)

V-4: Finally set u = w +
∑

i λisi.

The existence and uniqueness of the solution u and w is clear. By
Theorem 2.2 and Theorem 2.3 we have the solution w ∈ H2(Ω) and u is
the solution of (1.1).

3. Finite Element Approximation

In this section we present standard finite element approximation for u
obtained in the algorithm in the L2 and H1 norms. Let Th be a partition
of the domain Ω into triangular finite elements; i.e., Ω = ∪K∈ThK with
h = max{diamK : K ∈ Th}. Let Vh be continuous piecewise linear finite
element space; i.e.,

Vh = {φh ∈ C0(Ω) : φh|K ∈ P1(K) ∀K ∈ Th, φh = 0 on Γ0} ⊂ H1
0(Ω),

where P1(K) is the space of linear functions on K.
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Figure 2. Two polar coordinates on a T-shaped domain

Now the error analysis of the method in the standard norms, ‖ ·‖ and
| · |1, is carried out with a regular triangulation and continuous piecewise
linear finite element space Vh. ( See [8])

Note we can find approximated solution uh using the following Algo-
rithm: Algorithm (A) :

A-1: To find uh ∈ Vh such that

(∇uh,∇v) = (f, v) ∀ v ∈ Vh. (3.1)

A-2: Then compute λi,h by

λi,h =
1

π

∫
Ω
fηis−idx+

1

π

∫
Ω
uh∆(ηis−i)dx. (3.2)

A-3: To find wh such that wh +
∑

i λi,hsi ∈ Vh and

(∇wh,∇v) = (f, v) ∀ v ∈ Vh. (3.3)

A-4: Then uh = wh +
∑

i λi,hsi.

4. Numerical Results and Conclusions

In this section we consider two examples with two concave boundary,
which reduce two singular points, with inner angles ω1 = ω2 = 3π

2 .

Example 4.1. Consider the Poisson equation in (1.1) with Dirich-
let boundary conditions on a T-type domain Ω = ((−2, 1) × (−1, 1)) \
((−2,−1]) × (−1, 0] ∪ [0, 1) × (−1, 0]) as in Figure 2. On this type of
domain it is obvious that there are two singular points where we may use
two polar coordinate systems; one the usual polar system (r, θ) and the
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other one (p, φ) centered at (−1, 0) as in Figure 2. We also need two cut-
off functions η1,ρ(r) and η2,ρ(p), where r and p are the distances from the
origin (0, 0) and (−1, 0), respectively. Let f = −∆(η1,3/4s1)+∆(η2,3/4s2)
be the input function so that the exact solution of the underlying prob-
lem is

u = η1,3/4s1 − η2,3/4s2.

The exact stress intensity factors are λ1 = 1 and λ2 = −1. The errors
of the stress intensity factors λ1,h and λ2,h, computed by using the stan-
dard finite element solution uh, are given in Table 1, The errors and
rates of approximated solutions by the standard finite element method
and by the algorithm (A), are presented in Table 2 and 3, respectively.

Mesh Size |λ1 − λ1,h| Rate |λ2 − λ2,h| Rate

h = 1
4 4.28379E-01 - 6.37161E-01 -

h = 1
8 1.13626E-01 1.91459 1.11555E-01 2.5139

h = 1
16 3.14410E-02 1.85357 2.71210E-02 2.04027

h = 1
32 6.63000E-03 2.24557 6.25000E-03 2.11748

h = 1
64 1.55700E-03 2.09024 1.50000E-03 2.05889

h = 1
128 3.01000E-04 2.37093 3.02000E-04 2.31234

h = 1
256 4.80000E-05 2.64866 4.70000E-05 2.68382

Table 1. Errors and convergence rates of the λ1,h and λ2,h

Mesh Size L2-norm Rate H1-norm Rate

h = 1
4 1.126630E-01 - 1.399020 -

h = 1
8 2.962570E-02 1.92709 7.282650E-01 0.94188

h = 1
16 8.670090E-03 1.77273 3.938880E-01 0.88668

h = 1
32 2.437850E-03 1.83044 2.013420E-01 0.96814

h = 1
64 7.776640E-04 1.64839 1.065820E-01 0.91768

h = 1
128 2.549740E-04 1.60880 5.542100E-02 0.94346

h = 1
256 9.121630E-05 1.48299 2.959570E-02 0.90505

Table 2. Errors and convergence rates for uh with the Standard FEM
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Mesh Size L2-norm Rate H1-norm Rate

h = 1
4 1.069880E-01 1.388820

h = 1
8 3.029070E-02 1.82050 7.575880E-01 0.87437

h = 1
16 7.487060E-03 2.01640 3.774330E-01 1.00519

h = 1
32 1.906160E-03 1.97373 1.899190E-01 0.99084

h = 1
64 4.856170E-04 1.97278 9.624000E-02 0.98068

h = 1
128 1.206410E-04 2.00910 4.795980E-02 1.00481

h = 1
256 3.021700E-05 1.99729 2.402360E-02 0.99737

Table 3. Errors and convergence rates for uh with our algorithmA

We also emphasize that the solution process A-3 in the algorithm A
does not include any cut-off function and this is unique and strong point
compared to other methods using singular functions. ([3])

Now we have the following conclusions from the theorems together
with the example and corresponding numerical results:

Conclusion 1 : We may use the method given in [8] for the Poisson
problem with multiple singular corners.

Conclusion 2 : As we see in Table 2 and 3, the algorithm A
may give better results than the standard finite element method.

Conclusion 3 : In the case that we have multiple singular points,
the support of cut-off functions may not be disjoint. The algorithm A
allows us to use the cut-off functions, whose supports make non-empty
intersections.
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